Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,056 Bytes
f9a6349 f71f431 f9a6349 888f9e4 f9a6349 d3c563b 17f21ca f9a6349 d3c563b f9a6349 d3c563b f9a6349 17f21ca f9a6349 d3c563b f9a6349 17f21ca f9a6349 d3c563b f9a6349 d3c563b f9a6349 d3c563b f9a6349 17f21ca d3c563b 17f21ca d3c563b 17f21ca d3c563b 17f21ca d3c563b f9a6349 d3c563b f9a6349 17f21ca d3c563b f9a6349 17f21ca f9a6349 d3c563b f9a6349 21f4849 f9a6349 21f4849 f9a6349 17f21ca f9a6349 d3c563b f9a6349 17f21ca f9a6349 17f21ca d3c563b f9a6349 5bca17b d3c563b 17f21ca f9a6349 17f21ca d3c563b 17f21ca d3c563b 17f21ca 21f4849 17f21ca 21f4849 17f21ca d3c563b 17f21ca 21f4849 17f21ca 21f4849 17f21ca 21f4849 17f21ca d3c563b 17f21ca 21f4849 17f21ca d3c563b 17f21ca d3c563b 17f21ca d3c563b 17f21ca f9a6349 d3c563b f9a6349 17f21ca f9a6349 17f21ca f9a6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys
# Add src/ to sys.path so LASER, video-sam2, GroundingDINO are importable
current_dir = Path(__file__).resolve().parent
src_dir = current_dir / "src"
if src_dir.is_dir() and str(src_dir) not in sys.path:
sys.path.insert(0, str(src_dir))
import spaces # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline # not strictly necessary, but fine
# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"
print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(
f" Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)
current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml" # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)
def _split_top_level_commas(s: str):
"""
Split a string on commas that are NOT inside parentheses.
Example:
"behind(person, dog), bite(dog, frisbee)"
-> ["behind(person, dog)", "bite(dog, frisbee)"]
"""
parts = []
buf = []
depth = 0
for ch in s:
if ch == "(":
depth += 1
buf.append(ch)
elif ch == ")":
if depth > 0:
depth -= 1
buf.append(ch)
elif ch == "," and depth == 0:
part = "".join(buf).strip()
if part:
parts.append(part)
buf = []
else:
buf.append(ch)
if buf:
part = "".join(buf).strip()
if part:
parts.append(part)
return parts
def _extract_categories_from_binary(binary_keywords_str: str) -> list[str]:
"""
Pull candidate category tokens from binary keyword strings, e.g. relation(a, b).
Only returns tokens when parentheses and two comma-separated entries exist.
"""
categories: list[str] = []
for kw in _split_top_level_commas(binary_keywords_str or ""):
lpar = kw.find("(")
rpar = kw.rfind(")")
if lpar == -1 or rpar <= lpar:
continue
inside = kw[lpar + 1 : rpar]
parts = [p.strip() for p in inside.split(",") if p.strip()]
if len(parts) == 2:
categories.extend(parts)
return categories
def _parse_binary_keywords(binary_keywords_str: str, categorical_keywords: list[str]):
"""
Parse binary keyword string like:
"behind(person, dog), bite(dog, frisbee)"
into:
- binary_keywords_list: list of raw strings (used as CLIP text)
- batched_binary_predicates: {0: [(rel_text, from_cat, to_cat), ...]} or None
- warnings: list of warning strings about invalid/mismatched categories
"""
if not binary_keywords_str:
return [], None, []
cat_map = {
kw.strip().lower(): kw.strip()
for kw in categorical_keywords
if isinstance(kw, str) and kw.strip()
}
entries = _split_top_level_commas(binary_keywords_str)
binary_keywords_list: list[str] = []
predicates: list[tuple[str, str, str]] = []
warnings: list[str] = []
for raw in entries:
kw = raw.strip()
if not kw:
continue
# Always use the full raw keyword as the CLIP text string
binary_keywords_list.append(kw)
lpar = kw.find("(")
rpar = kw.rfind(")")
if (lpar == -1 and rpar != -1) or (lpar != -1 and rpar == -1) or rpar < lpar:
msg = (
f"Binary keyword '{kw}' has mismatched parentheses; expected "
"relation(from_category, to_category)."
)
print(msg)
warnings.append(msg)
continue
if lpar == -1 or rpar <= lpar:
# No explicit (from,to) part; treat as plain relation (no category filter)
continue
inside = kw[lpar + 1 : rpar]
parts = inside.split(",")
if len(parts) != 2:
msg = (
f"Ignoring '(from,to)' part in binary keyword '{kw}': "
f"expected exactly two comma-separated items."
)
print(msg)
warnings.append(msg)
continue
from_raw = parts[0].strip()
to_raw = parts[1].strip()
if not from_raw or not to_raw:
msg = f"Ignoring binary keyword '{kw}': empty from/to category."
print(msg)
warnings.append(msg)
continue
canonical_from = cat_map.get(from_raw.lower())
canonical_to = cat_map.get(to_raw.lower())
if canonical_from is None:
msg = (
f"Binary keyword '{kw}': from-category '{from_raw}' does not "
f"match any categorical keyword {categorical_keywords}."
)
print(msg)
warnings.append(msg)
if canonical_to is None:
msg = (
f"Binary keyword '{kw}': to-category '{to_raw}' does not "
f"match any categorical keyword {categorical_keywords}."
)
print(msg)
warnings.append(msg)
if canonical_from is None or canonical_to is None:
continue
# Store (relation_text, from_category, to_category)
predicates.append((kw, canonical_from, canonical_to))
if not predicates:
return binary_keywords_list, None, warnings
return binary_keywords_list, {0: predicates}, warnings
@lru_cache(maxsize=1)
def _load_vine_pipeline():
"""
Lazy-load and cache the LASER (VINE HF) pipeline so we don't re-download/rebuild it on every request.
"""
from vine_hf import VineConfig, VineModel, VinePipeline
config = VineConfig(
segmentation_method="grounding_dino_sam2",
model_name="openai/clip-vit-base-patch32",
use_hf_repo=True,
model_repo="KevinX-Penn28/testing",
box_threshold=0.35,
text_threshold=0.25,
target_fps=1, # default 1 FPS
topk_cate=5,
white_alpha=0.3,
visualization_dir=visualization_dir,
visualize=True,
debug_visualizations=False,
device="cuda",
categorical_pool="max",
auto_add_not_unary=False, # UI will control this per-call
)
model = VineModel(config)
return VinePipeline(
model=model,
tokenizer=None,
sam_config_path=sam_config_path,
sam_checkpoint_path=sam_checkpoint_path,
gd_config_path=gd_config_path,
gd_checkpoint_path=gd_checkpoint_path,
device="cuda",
trust_remote_code=True,
)
@spaces.GPU(duration=120) # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
video_file,
categorical_keywords,
unary_keywords,
binary_keywords,
auto_add_not_unary,
output_fps,
box_threshold,
text_threshold,
binary_confidence_threshold,
):
vine_pipe = _load_vine_pipeline()
# Normalize incoming video input to a file path
if isinstance(video_file, dict):
video_file = (
video_file.get("name")
or video_file.get("filepath")
or video_file.get("data")
)
if not isinstance(video_file, (str, Path)):
raise ValueError(f"Unsupported video input type: {type(video_file)}")
video_path = Path(video_file)
if video_path.suffix.lower() != ".mp4":
msg = (
"Please upload an MP4 file. LASER currently supports MP4 inputs for "
"scene-graph generation."
)
print(msg)
return None, {"error": msg}
video_file = str(video_path)
# Keep original strings for parsing
categorical_keywords_str = categorical_keywords
unary_keywords_str = unary_keywords
binary_keywords_str = binary_keywords
categorical_keywords = (
[kw.strip() for kw in categorical_keywords_str.split(",")]
if categorical_keywords_str
else []
)
unary_keywords = (
[kw.strip() for kw in unary_keywords_str.split(",")]
if unary_keywords_str
else []
)
# Preprocess: pull categories referenced in binary keywords and add any missing ones
added_categories: list[str] = []
extra_cats = _extract_categories_from_binary(binary_keywords_str or "")
if extra_cats:
existing_lower = {kw.lower() for kw in categorical_keywords}
for cat in extra_cats:
if cat and cat.lower() not in existing_lower:
categorical_keywords.append(cat)
existing_lower.add(cat.lower())
added_categories.append(cat)
# Parse binary keywords with category info (if provided)
(
binary_keywords_list,
batched_binary_predicates,
binary_input_warnings,
) = _parse_binary_keywords(binary_keywords_str or "", categorical_keywords)
if added_categories:
binary_input_warnings.append(
"Auto-added categorical keywords from binary relations: "
+ ", ".join(added_categories)
)
skip_binary = len(binary_keywords_list) == 0
# Debug: Print what we're sending to the pipeline
print("\n" + "=" * 80)
print("INPUT TO LASER PIPELINE:")
print(f" categorical_keywords: {categorical_keywords}")
print(f" unary_keywords: {unary_keywords}")
print(f" binary_keywords (raw parsed): {binary_keywords_list}")
print(f" batched_binary_predicates: {batched_binary_predicates}")
print(f" auto_add_not_unary: {auto_add_not_unary}")
print(f" skip_binary: {skip_binary}")
print("=" * 80 + "\n")
# Object pairs is now optional - empty list will auto-generate all pairs in vine_model.py
object_pairs: list[tuple[int, int]] = []
extra_forward_kwargs = {}
if batched_binary_predicates is not None and not skip_binary:
# Use category-based filtering of binary pairs
extra_forward_kwargs["batched_binary_predicates"] = batched_binary_predicates
extra_forward_kwargs["topk_cate"] = 1 # as requested
extra_forward_kwargs["auto_add_not_unary"] = bool(auto_add_not_unary)
if skip_binary:
extra_forward_kwargs["disable_binary"] = True
results = vine_pipe(
inputs=video_file,
categorical_keywords=categorical_keywords,
unary_keywords=unary_keywords,
binary_keywords=binary_keywords_list,
object_pairs=object_pairs,
segmentation_method="grounding_dino_sam2",
return_top_k=5,
include_visualizations=True,
debug_visualizations=False,
device="cuda",
box_threshold=box_threshold,
text_threshold=text_threshold,
target_fps=output_fps,
binary_confidence_threshold=binary_confidence_threshold,
**extra_forward_kwargs,
)
# Debug: Print what the pipeline returned
print("\n" + "=" * 80)
print("PIPELINE RESULTS DEBUG:")
print(f" results type: {type(results)}")
if isinstance(results, dict):
print(f" results keys: {list(results.keys())}")
print("=" * 80 + "\n")
vine_pipe.box_threshold = box_threshold
vine_pipe.text_threshold = text_threshold
vine_pipe.target_fps = output_fps
if isinstance(results, Mapping):
results_dict = results
elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
results_dict = results[0]
else:
results_dict = {}
visualizations = results_dict.get("visualizations") or {}
vine = visualizations.get("vine") or {}
all_vis = vine.get("all") or {}
result_video_path = all_vis.get("video_path")
if not result_video_path:
candidates = sorted(
Path(visualization_dir).rglob("*.mp4"),
key=lambda p: p.stat().st_mtime,
reverse=True,
)
result_video_path = str(candidates[0]) if candidates else None
summary = results_dict.get("summary") or {}
# Attach any binary category parsing warnings into the summary JSON
if binary_input_warnings:
if "binary_input_warnings" in summary:
summary["binary_input_warnings"].extend(binary_input_warnings)
else:
summary["binary_input_warnings"] = binary_input_warnings
if result_video_path and os.path.exists(result_video_path):
gradio_tmp = (
Path(os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir()))
/ "vine_outputs"
)
gradio_tmp.mkdir(parents=True, exist_ok=True)
dest_path = gradio_tmp / Path(result_video_path).name
try:
shutil.copyfile(result_video_path, dest_path)
video_path_for_ui = str(dest_path)
except Exception as e:
print(f"Warning: failed to copy video to Gradio temp dir: {e}")
video_path_for_ui = str(result_video_path)
else:
video_path_for_ui = None
print(
"Warning: annotated video not found or empty; check visualization settings."
)
return video_path_for_ui, summary
def _video_component(label: str, *, is_output: bool = False):
"""
Build a Gradio Video component that is compatible with older Gradio versions
(no `type`/`sources`/`format` kwargs) and newer ones when available.
"""
kwargs = {"label": label}
sig = inspect.signature(gr.Video.__init__)
# Only set format for OUTPUT components
if is_output and "format" in sig.parameters:
kwargs["format"] = "mp4"
if not is_output:
if "type" in sig.parameters:
kwargs["type"] = "filepath"
if "sources" in sig.parameters:
kwargs["sources"] = ["upload"]
# Restrict to MP4 files only
if "file_types" in sig.parameters:
kwargs["file_types"] = [".mp4"]
if is_output and "autoplay" in sig.parameters:
kwargs["autoplay"] = True
return gr.Video(**kwargs)
def _create_blocks():
"""
Build a Blocks context that works across Gradio versions.
"""
blocks_kwargs = {"title": "LASER Scene Graph Demo"}
soft_theme = None
if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
try:
soft_theme = gr.themes.Soft()
except Exception:
soft_theme = None
if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
blocks_kwargs["theme"] = soft_theme
return gr.Blocks(**blocks_kwargs)
# Create Gradio interface with two-column layout
with _create_blocks() as demo:
gr.Markdown(
"""
# ๐ฌ LASER: Spatio-temporal Scene Graphs for Video
Turn any MP4 into a spatio-temporal scene graph with LASER - our 454-million parameter foundation model for scene-graph generation. LASER trains on 87K+ open-domain videos using a neurosymbolic caption-to-scene alignment pipeline, so it learns fine-grained video semantics without human labels.
Upload an MP4 and sketch the scene graph you care about: specify the objects, actions, and interactions you want, and LASER will assemble a spatio-temporal scene graph plus an annotated video.
"""
)
with gr.Row():
# Left column: Inputs
with gr.Column(scale=1):
gr.Markdown("### Scene Graph Inputs")
video_input = _video_component("Upload Video (MP4 only)", is_output=False)
gr.Markdown("*Note: Only MP4 format is currently supported*")
gr.Markdown("#### Scene Graph Queries")
categorical_input = gr.Textbox(
label="Categorical Keywords",
placeholder="e.g., person, car, dog",
value="person, car, dog",
info="Objects to detect in the video (comma-separated)",
)
unary_input = gr.Textbox(
label="Unary Keywords",
placeholder="e.g., walking, running, standing",
value="walking, running, standing",
info="Single-object actions to detect (comma-separated)",
)
binary_input = gr.Textbox(
label="Binary Keywords",
placeholder="e.g., behind(person, dog), bite(dog, frisbee)",
info=(
"Object-to-object interactions to detect. "
"Use format: relation(from_category, to_category). "
"Example: 'behind(person, dog), bite(dog, frisbee)'. "
"If you omit '(from,to)', the relation will be applied to all object pairs (default behavior). "
"Leave blank to skip binary relation search entirely."
),
)
add_not_unary_checkbox = gr.Checkbox(
label="Also query 'not <unary>' predicates",
value=False,
info="If enabled, for each unary keyword X, also query 'not X'.",
)
gr.Markdown("#### Processing Settings")
fps_input = gr.Number(
label="Output FPS",
value=1,
info="Frames per second for processing (lower = faster)",
)
with gr.Accordion("Advanced Settings", open=False):
box_threshold_input = gr.Slider(
label="Box Threshold",
minimum=0.1,
maximum=0.9,
value=0.35,
step=0.05,
info="Confidence threshold for object detection",
)
text_threshold_input = gr.Slider(
label="Text Threshold",
minimum=0.1,
maximum=0.9,
value=0.25,
step=0.05,
info="Confidence threshold for text-based detection",
)
binary_confidence_input = gr.Slider(
label="Binary Relation Confidence Threshold",
minimum=0.0,
maximum=1.0,
value=.5,
step=0.05,
info="Minimum confidence to show binary relations and object pairs",
)
submit_btn = gr.Button("๐ Process Video", variant="primary", size="lg")
# Right column: Outputs
with gr.Column(scale=1):
gr.Markdown("### Scene Graph Results")
video_output = _video_component("Annotated Video Output", is_output=True)
gr.Markdown("### Scene Graph Summary")
summary_output = gr.JSON(label="Scene Graph / Detected Events")
gr.Markdown(
"""
---
### How to Use LASER
1. Upload an MP4 (we validate the format for you).
2. Describe the **nodes** of your spatio-temporal scene graph with categorical keywords (objects) and unary keywords (single-object actions).
3. Wire up **binary** relations:
- Use the structured form `relation(from_category, to_category)` (e.g., `behind(person, dog), bite(dog, frisbee)`) to limit relations to those category pairs.
- Or list relation names (`chasing, carrying`) to evaluate all object pairs.
- Leave the field blank to skip binary relations entirely (no pair search or binary predicates).
- Categories referenced inside binary relations are auto-added to the categorical list for you.
4. Optionally enable automatic `'not <unary>'` predicates.
5. Adjust processing settings if needed and click **Process Video** to receive an annotated video plus the serialized scene graph.
More to explore:
- LASER paper (ICLR'25): https://arxiv.org/abs/2304.07647 | Demo: https://huggingface.co/spaces/jiani-huang/LASER | Code: https://github.com/video-fm/LASER
- ESCA paper: https://arxiv.org/abs/2510.15963 | Code: https://github.com/video-fm/ESCA | Model: https://huggingface.co/video-fm/vine_v0 | Dataset: https://huggingface.co/datasets/video-fm/ESCA-video-87K
- Meet us at **NeurIPS 2025** (San Diego, Exhibit Hall C/D/E, Booth #4908 - Wed, Dec 3 - 11:00 a.m.-2:00 p.m. PST) for the foundation model demo, code, and full paper.
"""
)
submit_btn.click(
fn=process_video,
inputs=[
video_input,
categorical_input,
unary_input,
binary_input,
add_not_unary_checkbox,
fps_input,
box_threshold_input,
text_threshold_input,
binary_confidence_input,
],
outputs=[video_output, summary_output],
)
if __name__ == "__main__":
print("Got to main")
demo.launch(share=True, debug=True)
|