LASER / app.py
ASethi04's picture
updates
21f4849
raw
history blame
12.8 kB
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys
# Add src/ to sys.path so LASER, video-sam2, GroundingDINO are importable
current_dir = Path(__file__).resolve().parent
src_dir = current_dir / "src"
if src_dir.is_dir() and str(src_dir) not in sys.path:
sys.path.insert(0, str(src_dir))
import spaces # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline # not strictly necessary, but fine
# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"
print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(
f" Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)
current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml" # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)
@lru_cache(maxsize=1)
def _load_vine_pipeline():
"""
Lazy-load and cache the Vine pipeline so we don't re-download/rebuild it on every request.
"""
from vine_hf import VineConfig, VineModel, VinePipeline
config = VineConfig(
segmentation_method="grounding_dino_sam2",
model_name="openai/clip-vit-base-patch32",
use_hf_repo=True,
model_repo="KevinX-Penn28/testing",
box_threshold=0.35,
text_threshold=0.25,
target_fps=1, # default 1 FPS
topk_cate=5,
white_alpha=0.3,
visualization_dir=visualization_dir,
visualize=True,
debug_visualizations=False,
device="cuda",
categorical_pool="max",
)
model = VineModel(config)
return VinePipeline(
model=model,
tokenizer=None,
sam_config_path=sam_config_path,
sam_checkpoint_path=sam_checkpoint_path,
gd_config_path=gd_config_path,
gd_checkpoint_path=gd_checkpoint_path,
device="cuda",
trust_remote_code=True,
)
@spaces.GPU(duration=120) # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
video_file,
categorical_keywords,
unary_keywords,
binary_keywords,
output_fps,
box_threshold,
text_threshold,
binary_confidence_threshold,
):
vine_pipe = _load_vine_pipeline()
# Normalize incoming video input to a file path
if isinstance(video_file, dict):
video_file = (
video_file.get("name")
or video_file.get("filepath")
or video_file.get("data")
)
if not isinstance(video_file, (str, Path)):
raise ValueError(f"Unsupported video input type: {type(video_file)}")
categorical_keywords = (
[kw.strip() for kw in categorical_keywords.split(",")]
if categorical_keywords
else []
)
unary_keywords = (
[kw.strip() for kw in unary_keywords.split(",")] if unary_keywords else []
)
binary_keywords = (
[kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
)
# Debug: Print what we're sending to the pipeline
print("\n" + "=" * 80)
print("INPUT TO VINE PIPELINE:")
print(f" categorical_keywords: {categorical_keywords}")
print(f" unary_keywords: {unary_keywords}")
print(f" binary_keywords: {binary_keywords}")
print("=" * 80 + "\n")
# Object pairs is now optional - empty list will auto-generate all pairs in vine_model.py
object_pairs = []
results = vine_pipe(
inputs=video_file,
categorical_keywords=categorical_keywords,
unary_keywords=unary_keywords,
binary_keywords=binary_keywords,
object_pairs=object_pairs,
segmentation_method="grounding_dino_sam2",
return_top_k=5,
include_visualizations=True,
debug_visualizations=False,
device="cuda",
box_threshold=box_threshold,
text_threshold=text_threshold,
target_fps=output_fps,
binary_confidence_threshold=binary_confidence_threshold,
)
# Debug: Print what the pipeline returned
print("\n" + "=" * 80)
print("PIPELINE RESULTS DEBUG:")
print(f" results type: {type(results)}")
if isinstance(results, dict):
print(f" results keys: {list(results.keys())}")
print("=" * 80 + "\n")
vine_pipe.box_threshold = box_threshold
vine_pipe.text_threshold = text_threshold
vine_pipe.target_fps = output_fps
if isinstance(results, Mapping):
results_dict = results
elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
results_dict = results[0]
else:
results_dict = {}
visualizations = results_dict.get("visualizations") or {}
vine = visualizations.get("vine") or {}
all_vis = vine.get("all") or {}
result_video_path = all_vis.get("video_path")
if not result_video_path:
candidates = sorted(
Path(visualization_dir).rglob("*.mp4"),
key=lambda p: p.stat().st_mtime,
reverse=True,
)
result_video_path = str(candidates[0]) if candidates else None
summary = results_dict.get("summary") or {}
if result_video_path and os.path.exists(result_video_path):
gradio_tmp = (
Path(os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir()))
/ "vine_outputs"
)
gradio_tmp.mkdir(parents=True, exist_ok=True)
dest_path = gradio_tmp / Path(result_video_path).name
try:
shutil.copyfile(result_video_path, dest_path)
video_path_for_ui = str(dest_path)
except Exception as e:
print(f"Warning: failed to copy video to Gradio temp dir: {e}")
video_path_for_ui = str(result_video_path)
else:
video_path_for_ui = None
print(
"Warning: annotated video not found or empty; check visualization settings."
)
return video_path_for_ui, summary
def _video_component(label: str, *, is_output: bool = False):
"""
Build a Gradio Video component that is compatible with older Gradio versions
(no `type`/`sources`/`format` kwargs) and newer ones when available.
"""
kwargs = {"label": label}
sig = inspect.signature(gr.Video.__init__)
# Only set format for OUTPUT components
if is_output and "format" in sig.parameters:
kwargs["format"] = "mp4"
if not is_output:
if "type" in sig.parameters:
kwargs["type"] = "filepath"
if "sources" in sig.parameters:
kwargs["sources"] = ["upload"]
# Restrict to MP4 files only
if "file_types" in sig.parameters:
kwargs["file_types"] = [".mp4"]
if is_output and "autoplay" in sig.parameters:
kwargs["autoplay"] = True
return gr.Video(**kwargs)
def _create_blocks():
"""
Build a Blocks context that works across Gradio versions.
"""
blocks_kwargs = {"title": "VINE Demo"}
soft_theme = None
if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
try:
soft_theme = gr.themes.Soft()
except Exception:
soft_theme = None
if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
blocks_kwargs["theme"] = soft_theme
return gr.Blocks(**blocks_kwargs)
# Create Gradio interface with two-column layout
with _create_blocks() as demo:
gr.Markdown(
"""
# ๐ŸŽฌ VINE: Video-based Interaction and Event Detection
Upload an MP4 video and specify keywords to detect objects, actions, and interactions in your video.
"""
)
with gr.Row():
# Left column: Inputs
with gr.Column(scale=1):
gr.Markdown("### Input Configuration")
video_input = _video_component("Upload Video (MP4 only)", is_output=False)
gr.Markdown("*Note: Only MP4 format is currently supported*")
gr.Markdown("#### Detection Keywords")
categorical_input = gr.Textbox(
label="Categorical Keywords",
placeholder="e.g., person, car, dog",
value="person, car, dog",
info="Objects to detect in the video (comma-separated)",
)
unary_input = gr.Textbox(
label="Unary Keywords",
placeholder="e.g., walking, running, standing",
value="walking, running, standing",
info="Single-object actions to detect (comma-separated)",
)
binary_input = gr.Textbox(
label="Binary Keywords",
placeholder="e.g., chasing, carrying",
info="Object-to-object interactions to detect (comma-separated)",
)
gr.Markdown("#### Processing Settings")
fps_input = gr.Number(
label="Output FPS",
value=1,
info="Frames per second for processing (lower = faster)",
)
with gr.Accordion("Advanced Settings", open=False):
box_threshold_input = gr.Slider(
label="Box Threshold",
minimum=0.1,
maximum=0.9,
value=0.35,
step=0.05,
info="Confidence threshold for object detection",
)
text_threshold_input = gr.Slider(
label="Text Threshold",
minimum=0.1,
maximum=0.9,
value=0.25,
step=0.05,
info="Confidence threshold for text-based detection",
)
binary_confidence_input = gr.Slider(
label="Binary Relation Confidence Threshold",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.05,
info="Minimum confidence to show binary relations and object pairs",
)
submit_btn = gr.Button("๐Ÿš€ Process Video", variant="primary", size="lg")
# Right column: Outputs
with gr.Column(scale=1):
gr.Markdown("### Results")
video_output = _video_component("Annotated Video Output", is_output=True)
gr.Markdown("### Detection Summary")
summary_output = gr.JSON(label="Summary of Detected Events")
gr.Markdown(
"""
---
### How to Use
1. Upload an MP4 video file
2. Specify the objects, actions, and interactions you want to detect
3. Adjust processing settings if needed (including binary relation confidence threshold)
4. Click "Process Video" to analyze
The system will automatically detect all binary relations between detected objects
and show only those with confidence above the threshold (default: 0.8).
"""
)
submit_btn.click(
fn=process_video,
inputs=[
video_input,
categorical_input,
unary_input,
binary_input,
fps_input,
box_threshold_input,
text_threshold_input,
binary_confidence_input,
],
outputs=[video_output, summary_output],
)
if __name__ == "__main__":
print("Got to main")
demo.launch(share=True, debug=True)