LASER / src /vine_hf /OVERVIEW.md
moqingyan123
final fixes
888f9e4
|
raw
history blame
6.95 kB

VINE HuggingFace Interface - Complete Overview

This directory contains a complete HuggingFace-compatible interface for the VINE (Video Understanding with Natural Language) model. The interface allows you to easily use, share, and deploy your VINE model through the HuggingFace ecosystem.

πŸ“ Directory Structure

vine_hf/
β”œβ”€β”€ __init__.py                 # Package initialization and exports
β”œβ”€β”€ vine_config.py              # VineConfig class (PretrainedConfig)
β”œβ”€β”€ vine_model.py               # VineModel class (PreTrainedModel)  
β”œβ”€β”€ vine_pipeline.py            # VinePipeline class (Pipeline)
β”œβ”€β”€ example_usage.py            # Comprehensive usage examples
β”œβ”€β”€ convert_inference.py        # Migration guide from inference.py
β”œβ”€β”€ push_to_hub.py             # Script to push model to HF Hub
β”œβ”€β”€ setup.py                   # Package setup configuration
β”œβ”€β”€ README.md                  # Detailed documentation
└── OVERVIEW.md                # This file

πŸ—οΈ Architecture Components

1. VineConfig (vine_config.py)

  • Inherits from PretrainedConfig
  • Configures model parameters, segmentation methods, and processing options
  • Compatible with HuggingFace configuration system

2. VineModel (vine_model.py)

  • Inherits from PreTrainedModel
  • Implements the core VINE model with three CLIP backbones
  • Supports categorical, unary, and binary predictions
  • Provides both forward() and predict() methods

3. VinePipeline (vine_pipeline.py)

  • Inherits from Pipeline
  • Handles end-to-end video processing workflow
  • Integrates segmentation (SAM2, Grounding DINO + SAM2)
  • Provides user-friendly interface for video understanding

πŸš€ Key Features

βœ… Full HuggingFace Compatibility

  • Compatible with transformers library
  • Supports AutoModel and pipeline interfaces
  • Can be pushed to and loaded from HuggingFace Hub

βœ… Flexible Segmentation

  • Support for SAM2 automatic segmentation
  • Support for Grounding DINO + SAM2 text-guided segmentation
  • Configurable thresholds and parameters

βœ… Multi-Modal Understanding

  • Categorical classification (object types)
  • Unary predicates (single object actions)
  • Binary relations (object-object relationships)

βœ… Easy Integration

  • Simple pipeline interface for end users
  • Direct model access for researchers
  • Comprehensive configuration options

πŸ“– Usage Examples

Quick Start with Pipeline

from transformers import pipeline
from vine_hf import VineModel, VinePipeline

# Create pipeline
vine_pipeline = pipeline(
    "vine-video-understanding",
    model="your-username/vine-model",
    trust_remote_code=True
)

# Process video
results = vine_pipeline(
    "video.mp4",
    categorical_keywords=['human', 'dog', 'frisbee'],
    unary_keywords=['running', 'jumping'],
    binary_keywords=['chasing', 'behind']
)

Direct Model Usage

from vine_hf import VineConfig, VineModel

config = VineConfig(segmentation_method="grounding_dino_sam2")
model = VineModel(config)

results = model.predict(
    video_frames=video_tensor,
    masks=masks_dict,
    bboxes=bboxes_dict,
    categorical_keywords=['human', 'dog'],
    unary_keywords=['running', 'sitting'],
    binary_keywords=['chasing', 'near']
)

πŸ”§ Migration from Original Code

The convert_inference.py script shows how to migrate from the original inference.py workflow:

Original Approach:

  • Manual model loading and configuration
  • Direct handling of segmentation pipeline
  • Custom result processing
  • Complex setup requirements

New HuggingFace Interface:

  • Standardized model configuration
  • Automatic preprocessing/postprocessing
  • Simple pipeline interface
  • Easy sharing via HuggingFace Hub

πŸ“€ Sharing Your Model

Use the push_to_hub.py script to share your trained model:

python vine_hf/push_to_hub.py \
    --weights path/to/your/model.pth \
    --repo your-username/vine-model \
    --login

πŸ› οΈ Installation & Setup

  1. Install Dependencies:
pip install transformers torch torchvision opencv-python pillow numpy
  1. Install Segmentation Models (Optional):

  2. Install VINE HF Interface:

cd vine_hf
pip install -e .

🎯 Configuration Options

The VineConfig class supports extensive configuration:

  • Model Settings: CLIP backbone, hidden dimensions
  • Segmentation: Method, thresholds, target FPS
  • Processing: Alpha values, top-k results, video length limits
  • Performance: Multi-class mode, output format options

πŸ“Š Output Format

The interface returns structured predictions:

{
    "categorical_predictions": {obj_id: [(prob, category), ...]},
    "unary_predictions": {(frame, obj): [(prob, action), ...]},
    "binary_predictions": {(frame, pair): [(prob, relation), ...]},
    "confidence_scores": {"categorical": float, "unary": float, "binary": float},
    "summary": {
        "num_objects_detected": int,
        "top_categories": [(category, prob), ...],
        "top_actions": [(action, prob), ...],
        "top_relations": [(relation, prob), ...]
    }
}

πŸ” Testing & Validation

Run the example scripts to test your setup:

# Test basic functionality
python vine_hf/example_usage.py

# Test migration from original code  
python vine_hf/convert_inference.py

🀝 Contributing

To contribute or customize:

  1. Modify Configuration: Edit vine_config.py for new parameters
  2. Extend Model: Add functionality to vine_model.py
  3. Enhance Pipeline: Improve preprocessing/postprocessing in vine_pipeline.py
  4. Add Features: Create additional utility scripts

πŸ“ Next Steps

  1. Load Your Weights: Use your trained VINE model weights
  2. Test Segmentation: Set up Grounding DINO and SAM2 models
  3. Validate Results: Compare with original inference.py output
  4. Share Model: Push to HuggingFace Hub for community use
  5. Deploy: Use in applications, demos, or research projects

πŸ› Troubleshooting

Common Issues:

  • Import Errors: Check PYTHONPATH and package installation
  • Segmentation Failures: Verify Grounding DINO/SAM2 setup
  • Weight Loading: Adjust weight loading logic in convert_inference.py
  • CUDA Issues: Check GPU availability and PyTorch installation

Support:

  • Check the README.md for detailed documentation
  • Review example_usage.py for working code examples
  • Examine convert_inference.py for migration guidance

This HuggingFace interface makes VINE accessible to the broader ML community while maintaining all the powerful video understanding capabilities of the original model. The standardized interface enables easy sharing, deployment, and integration with existing HuggingFace workflows.