Spaces:
Paused
Paused
File size: 5,550 Bytes
fb9ecd6 7fa80e9 de6a4a2 fb9ecd6 de6a4a2 7fa80e9 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 560a2a7 de6a4a2 fb9ecd6 de6a4a2 560a2a7 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 f3a13dd de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 de6a4a2 fb9ecd6 398c325 fb9ecd6 398c325 d1e80e2 398c325 d1e80e2 398c325 fb9ecd6 398c325 fb9ecd6 de6a4a2 fb9ecd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re
# ---- HF Spaces: ensure we read the platform port ----
PORT = int(os.getenv("PORT", "7860"))
models = {
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained(
"OS-Copilot/OS-Atlas-Base-7B",
torch_dtype="auto",
device_map="auto",
),
}
processors = {
"OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
}
def image_to_base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def draw_bounding_boxes(image: Image.Image, bounding_boxes, outline_color="red", line_width=2):
draw = ImageDraw.Draw(image)
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
return image
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
x_scale = original_width / scaled_width
y_scale = original_height / scaled_height
rescaled_boxes = []
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
rescaled_boxes.append([xmin * x_scale, ymin * y_scale, xmax * x_scale, ymax * y_scale])
return rescaled_boxes
@spaces.GPU
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
model = models[model_id].eval()
processor = processors[model_id]
prompt = f'In this UI screenshot, what is the position of the element corresponding to the command "{text_input}" (with bbox)?'
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
text = output_text[0]
# ---- simple, defensive parsing so the Space doesn't 500 if pattern not found ----
object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"
object_match = re.search(object_ref_pattern, text or "")
box_match = re.search(box_pattern, text or "")
object_ref = object_match.group(1) if object_match else ""
box_content = box_match.group(1) if box_match else ""
boxes = []
if box_content:
try:
parsed = [tuple(map(int, pair.strip("()").split(","))) for pair in box_content.split("),(")]
# expecting two points -> convert to [xmin, ymin, xmax, ymax]
if len(parsed) >= 2:
boxes = [[parsed[0][0], parsed[0][1], parsed[1][0], parsed[1][1]]]
except Exception:
boxes = []
scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) if boxes else []
annotated = draw_bounding_boxes(image.copy(), scaled_boxes) if scaled_boxes else image
return object_ref, scaled_boxes, annotated
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil")
model_selector = gr.Dropdown(
choices=list(models.keys()),
label="Model",
value="OS-Copilot/OS-Atlas-Base-7B"
)
text_input = gr.Textbox(label="User Prompt")
submit_btn = gr.Button(value="Submit")
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
model_output_box = gr.Textbox(label="Model Output Box")
annotated_image = gr.Image(label="Annotated Image")
gr.Examples(
examples=[
["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"],
["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"],
],
inputs=[input_img, text_input],
outputs=[model_output_text, model_output_box, annotated_image],
fn=run_example,
cache_examples=True,
label="Try examples",
)
submit_btn.click(
run_example,
[input_img, text_input, model_selector],
[model_output_text, model_output_box, annotated_image],
)
# ---- HF Spaces: bind to all interfaces + use provided port; disable API schema to avoid json-schema bug ----
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=PORT, show_error=True, debug=True)
|