File size: 5,550 Bytes
fb9ecd6
7fa80e9
de6a4a2
fb9ecd6
de6a4a2
 
 
 
 
 
7fa80e9
 
fb9ecd6
 
 
de6a4a2
fb9ecd6
 
 
 
 
de6a4a2
 
 
 
 
 
 
fb9ecd6
de6a4a2
 
fb9ecd6
de6a4a2
 
fb9ecd6
de6a4a2
 
 
 
 
 
 
 
 
 
 
 
 
fb9ecd6
de6a4a2
 
 
 
560a2a7
de6a4a2
 
fb9ecd6
 
de6a4a2
 
 
 
 
560a2a7
de6a4a2
 
 
 
fb9ecd6
de6a4a2
 
 
 
 
 
 
fb9ecd6
de6a4a2
 
fb9ecd6
de6a4a2
 
 
f3a13dd
de6a4a2
fb9ecd6
de6a4a2
 
 
fb9ecd6
 
 
 
 
de6a4a2
fb9ecd6
 
 
 
 
 
 
 
 
 
 
 
 
 
de6a4a2
 
 
 
fb9ecd6
 
 
de6a4a2
 
fb9ecd6
de6a4a2
fb9ecd6
 
398c325
 
 
fb9ecd6
 
 
 
 
398c325
 
 
 
d1e80e2
398c325
 
 
 
 
 
 
 
d1e80e2
398c325
 
fb9ecd6
398c325
 
fb9ecd6
 
 
 
 
de6a4a2
fb9ecd6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re


# ---- HF Spaces: ensure we read the platform port ----
PORT = int(os.getenv("PORT", "7860"))

models = {
    "OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained(
        "OS-Copilot/OS-Atlas-Base-7B",
        torch_dtype="auto",
        device_map="auto",
    ),
}

processors = {
    "OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
}


def image_to_base64(image: Image.Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")


def draw_bounding_boxes(image: Image.Image, bounding_boxes, outline_color="red", line_width=2):
    draw = ImageDraw.Draw(image)
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
    return image


def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
    x_scale = original_width / scaled_width
    y_scale = original_height / scaled_height
    rescaled_boxes = []
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        rescaled_boxes.append([xmin * x_scale, ymin * y_scale, xmax * x_scale, ymax * y_scale])
    return rescaled_boxes


@spaces.GPU
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
    model = models[model_id].eval()
    processor = processors[model_id]

    prompt = f'In this UI screenshot, what is the position of the element corresponding to the command "{text_input}" (with bbox)?'
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to("cuda")

    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
    )
    text = output_text[0]

    # ---- simple, defensive parsing so the Space doesn't 500 if pattern not found ----
    object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
    box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"

    object_match = re.search(object_ref_pattern, text or "")
    box_match = re.search(box_pattern, text or "")

    object_ref = object_match.group(1) if object_match else ""
    box_content = box_match.group(1) if box_match else ""

    boxes = []
    if box_content:
        try:
            parsed = [tuple(map(int, pair.strip("()").split(","))) for pair in box_content.split("),(")]
            # expecting two points -> convert to [xmin, ymin, xmax, ymax]
            if len(parsed) >= 2:
                boxes = [[parsed[0][0], parsed[0][1], parsed[1][0], parsed[1][1]]]
        except Exception:
            boxes = []

    scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) if boxes else []
    annotated = draw_bounding_boxes(image.copy(), scaled_boxes) if scaled_boxes else image

    return object_ref, scaled_boxes, annotated


css = """
  #output {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents")

    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Input Image", type="pil")
            model_selector = gr.Dropdown(
                choices=list(models.keys()),
                label="Model",
                value="OS-Copilot/OS-Atlas-Base-7B"
            )
            text_input = gr.Textbox(label="User Prompt")
            submit_btn = gr.Button(value="Submit")
        with gr.Column():
            model_output_text = gr.Textbox(label="Model Output Text")
            model_output_box = gr.Textbox(label="Model Output Box")
            annotated_image = gr.Image(label="Annotated Image")

    gr.Examples(
        examples=[
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"],
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"],
        ],
        inputs=[input_img, text_input],
        outputs=[model_output_text, model_output_box, annotated_image],
        fn=run_example,
        cache_examples=True,
        label="Try examples",
    )

    submit_btn.click(
        run_example,
        [input_img, text_input, model_selector],
        [model_output_text, model_output_box, annotated_image],
    )

# ---- HF Spaces: bind to all interfaces + use provided port; disable API schema to avoid json-schema bug ----
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=PORT, show_error=True, debug=True)