File size: 7,553 Bytes
fb9ecd6
7fa80e9
c12d71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9ecd6
de6a4a2
 
 
 
 
 
7fa80e9
dc3c3e6
 
 
7fa80e9
dc3c3e6
 
 
 
 
de6a4a2
fb9ecd6
 
dc3c3e6
 
 
de6a4a2
 
 
 
 
 
dc3c3e6
fb9ecd6
de6a4a2
 
fb9ecd6
de6a4a2
fb9ecd6
de6a4a2
dc3c3e6
de6a4a2
 
 
 
 
dc3c3e6
 
de6a4a2
 
dc3c3e6
 
 
 
de6a4a2
dc3c3e6
560a2a7
dc3c3e6
 
 
 
de6a4a2
 
fb9ecd6
 
de6a4a2
 
 
 
 
560a2a7
de6a4a2
 
 
 
dc3c3e6
fb9ecd6
de6a4a2
 
 
 
 
 
 
dc3c3e6
 
 
 
de6a4a2
dc3c3e6
 
 
 
 
 
 
de6a4a2
 
dc3c3e6
de6a4a2
dc3c3e6
de6a4a2
 
 
fb9ecd6
 
 
dc3c3e6
 
de6a4a2
fb9ecd6
 
 
dc3c3e6
 
 
 
 
 
 
 
fb9ecd6
 
 
 
 
 
 
de6a4a2
dc3c3e6
de6a4a2
 
fb9ecd6
 
 
de6a4a2
 
fb9ecd6
de6a4a2
fb9ecd6
 
398c325
 
 
fb9ecd6
 
 
 
 
398c325
 
 
 
d1e80e2
398c325
 
 
 
 
 
 
 
247df58
398c325
 
fb9ecd6
 
 
 
 
de6a4a2
52f78d8
 
 
 
 
 
 
 
 
 
 
 
 
dc3c3e6
5dcf285
dc3c3e6
 
247df58
 
 
 
dc3c3e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import gradio as gr

# --- Patch gradio_client boolean-schema bug ---
import gradio_client.utils as gcu

orig_json_schema_to_python_type = gcu._json_schema_to_python_type

def _safe_json_schema_to_python_type(schema, defs):
    # Fix: handle boolean schema values for additionalProperties
    if isinstance(schema, bool):
        # True → any type allowed; False → never allowed
        return "Any" if schema else "Never"
    return orig_json_schema_to_python_type(schema, defs)

gcu._json_schema_to_python_type = _safe_json_schema_to_python_type
# ------------------------------------------------

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re

# -------- Runtime / device --------
# Force CPU usage
device = "cpu"

# Hugging Face Spaces port
PORT = int(os.getenv("PORT", "7860"))

# -------- Model / Processor --------
# NOTE: device_map=None + .to(device) keeps everything on CPU
models = {
    "OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained(
        "OS-Copilot/OS-Atlas-Base-7B",
        dtype="auto",          # use 'dtype' (new) rather than deprecated 'torch_dtype'
        device_map=None
    ).to(device)
}

processors = {
    "OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
}

# -------- Helpers --------
def image_to_base64(image: Image.Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def draw_bounding_boxes(image: Image.Image, bounding_boxes, outline_color="red", line_width=2):
    draw = ImageDraw.Draw(image)
    for box in bounding_boxes or []:
        xmin, ymin, xmax, ymax = box
        draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
    return image

def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
    if not bounding_boxes:
        return []
    x_scale = original_width / scaled_width
    y_scale = original_height / scaled_height
    return [
        [xmin * x_scale, ymin * y_scale, xmax * x_scale, ymax * y_scale]
        for (xmin, ymin, xmax, ymax) in bounding_boxes
    ]

# -------- Inference --------
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
    # Basic validation so the Space doesn't 500
    if image is None or (text_input is None or str(text_input).strip() == ""):
        return "", [], image

    model = models[model_id].eval()
    processor = processors[model_id]

    prompt = f'In this UI screenshot, what is the position of the element corresponding to the command "{text_input}" (with bbox)?'
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    # Build inputs
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )

    # Move tensors to CPU explicitly
    inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}

    # Generate
    with torch.no_grad():
        generated_ids = model.generate(**inputs, max_new_tokens=128)

    # Post-process
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids)]
    output_texts = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
    )
    text = output_texts[0] if output_texts else ""

    # Parse object_ref and bbox defensively
    object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
    box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"

    object_match = re.search(object_ref_pattern, text or "")
    box_match = re.search(box_pattern, text or "")

    object_ref = object_match.group(1).strip() if object_match else ""
    box_content = box_match.group(1).strip() if box_match else ""

    boxes = []
    if box_content:
        try:
            # Expecting "(x1,y1),(x2,y2)" -> convert to [xmin, ymin, xmax, ymax]
            parts = [p.strip() for p in box_content.split("),(")]
            parts[0] = parts[0].lstrip("(")
            parts[-1] = parts[-1].rstrip(")")
            coords = [tuple(map(int, p.split(","))) for p in parts]
            if len(coords) >= 2:
                (x1, y1), (x2, y2) = coords[0], coords[1]
                boxes = [[x1, y1, x2, y2]]
        except Exception:
            boxes = []

    scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) if boxes else []
    annotated = draw_bounding_boxes(image.copy(), scaled_boxes) if scaled_boxes else image

    return object_ref, scaled_boxes, annotated

# -------- UI --------
css = """
  #output {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents")

    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Input Image", type="pil")
            model_selector = gr.Dropdown(
                choices=list(models.keys()),
                label="Model",
                value="OS-Copilot/OS-Atlas-Base-7B"
            )
            text_input = gr.Textbox(label="User Prompt")
            submit_btn = gr.Button(value="Submit")
        with gr.Column():
            model_output_text = gr.Textbox(label="Model Output Text")
            model_output_box = gr.Textbox(label="Model Output Box")
            annotated_image = gr.Image(label="Annotated Image")

    gr.Examples(
        examples=[
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"],
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"],
        ],
        inputs=[input_img, text_input],
        # remove fn/outputs so examples only prefill inputs
    )

    submit_btn.click(
        run_example,
        [input_img, text_input, model_selector],
        [model_output_text, model_output_box, annotated_image],
    )

# ---- Make Gradio/Starlette error responses small & safe (no Content-Length drama) ----
from fastapi import Request
from starlette.responses import PlainTextResponse

app = demo.app  # FastAPI app behind Gradio Blocks

@app.exception_handler(Exception)
async def _catch_all_exceptions(request: Request, exc: Exception):
    # Return a very small body so Starlette/Uvicorn never miscounts bytes
    return PlainTextResponse("Internal Server Error", status_code=500)
# --------------------------------------------------------------------------------------


# -------- Launch (Spaces-friendly) --------
demo.queue().launch(
    server_name="0.0.0.0",
    server_port=PORT,
    show_error=False,   # avoid large HTML error bodies
    debug=False,        # avoid big pretty tracebacks (and Content-Length mismatch)
    show_api=False      # <— key: disables /api/info schema generation
    # api_open=False    # if your Gradio version expects the old name, use this instead of show_api
)