jvillar02's picture
Update app.py
c157987 verified
raw
history blame
5.35 kB
import gradio as gr
import torch
import numpy as np
import json
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel
from huggingface_hub import hf_hub_download
import os
# --- 1. CONFIGURATION ---
ADAPTER_REPO = "jvillar-sheff/ag-news-distilbert-lora"
BASE_MODEL_ID = "distilbert-base-uncased"
CLASS_NAMES = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
# --- 2. DYNAMIC METRICS LOADING ---
def fetch_metrics():
"""Downloads evaluation_report.json from the Model Hub."""
try:
file_path = hf_hub_download(repo_id=ADAPTER_REPO, filename="evaluation_report.json")
with open(file_path, "r") as f:
data = json.load(f)
# Extract numbers
acc = data['overall_metrics']['Accuracy']
f1 = data['overall_metrics']['F1 Macro']
return {
"Accuracy": f"{acc:.2%}",
"F1_Score": f"{f1:.4f}"
}
except Exception as e:
print(f"Error loading metrics: {e}")
return {"Accuracy": "N/A", "F1_Score": "N/A"}
# Load metrics on app startup
MODEL_METRICS = fetch_metrics()
# --- 3. MODEL LOADING ---
def load_model():
print("Loading Base Model...")
base_model = AutoModelForSequenceClassification.from_pretrained(
BASE_MODEL_ID,
num_labels=len(CLASS_NAMES),
id2label={k: v for k, v in enumerate(CLASS_NAMES.values())},
label2id={v: k for k, v in CLASS_NAMES.items()}
)
print("Loading Tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO)
print("Loading Adapters...")
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
# Force CPU for Free Tier Spaces
device = torch.device("cpu")
model.to(device)
model.eval()
return model, tokenizer, device
model, tokenizer, device = load_model()
# --- 4. PREDICTION LOGIC ---
def predict(text):
if not text.strip():
return None, None, None
inputs = tokenizer(
text, return_tensors="pt", truncation=True, padding="max_length", max_length=128
).to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().cpu().numpy()
# 1. Get Top Label
pred_idx = np.argmax(probs)
pred_label = CLASS_NAMES[pred_idx]
conf = float(probs[pred_idx])
# 2. Create Probability Dict for the Chart
class_probs = {CLASS_NAMES[i]: float(probs[i]) for i in range(len(CLASS_NAMES))}
# 3. Create HTML for the "Confidence Badge"
if conf > 0.85:
bg_color, txt_color, icon = "#d4edda", "#155724", "↑" # Green
elif conf > 0.60:
bg_color, txt_color, icon = "#fff3cd", "#856404", "~" # Yellow
else:
bg_color, txt_color, icon = "#f8d7da", "#721c24", "↓" # Red
badge_html = f"""
<div style='background-color: {bg_color}; color: {txt_color};
padding: 8px 16px; border-radius: 5px; display: inline-block; font-weight: bold; font-size: 16px;'>
{icon} Confidence: {conf:.2%}
</div>
"""
# Return: Label Text, Badge HTML, Chart Data
return f"# {pred_label}", badge_html, class_probs
# --- 5. UI LAYOUT (gr.Blocks) ---
# Using Soft theme (requires newer Gradio version in requirements.txt)
# If it fails, remove theme=gr.themes.Soft()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“° NLP News Classifier")
gr.Markdown("Classify news articles into World, Sports, Business, or Sci/Tech using DistilBERT + LoRA.")
# -- The "Green Banner" (HTML) --
gr.HTML(f"""
<div style="background-color: #d1e7dd; color: #0f5132; padding: 15px; border-radius: 5px; border: 1px solid #badbcc; margin-bottom: 20px;">
βœ… <b>Model Performance (Test Set):</b> Accuracy: {MODEL_METRICS['Accuracy']} | F1 Score: {MODEL_METRICS['F1_Score']}
</div>
""")
with gr.Row():
# Left Column: Input
with gr.Column(scale=1):
input_text = gr.Textbox(
lines=6,
placeholder="Paste a news snippet here...",
label="News Article"
)
btn = gr.Button("Classify Article", variant="primary")
gr.Markdown("### Examples")
gr.Examples(
examples=[
["The stock market rallied today as tech companies reported record profits."],
["The local team won the championship after a stunning overtime goal."],
["NASA announces plans to launch a new rover to Mars next July."]
],
inputs=input_text
)
# Right Column: Results
with gr.Column(scale=1):
gr.Markdown("### Prediction")
# Output 1: Big Label text
out_label = gr.Markdown()
# Output 2: The Colored Badge
out_badge = gr.HTML()
gr.Markdown("### Probability Breakdown")
# Output 3: Bar Chart
out_chart = gr.Label(num_top_classes=4, label="Confidence Scores")
# Wire up the button
btn.click(
fn=predict,
inputs=input_text,
outputs=[out_label, out_badge, out_chart]
)
# Launch
if __name__ == "__main__":
demo.launch()