Spaces:
Sleeping
Sleeping
File size: 17,547 Bytes
dbc0e16 439423b 555549c 4b260d9 555549c 439423b 555549c 377a152 e83cd54 abd725c 4b260d9 1878486 b2395f1 1878486 b2395f1 439423b 377a152 555549c e83cd54 f596015 439423b 1878486 e83cd54 555549c abd725c 377a152 d5ac657 555549c 4b260d9 ea6ec54 4b260d9 ea6ec54 0dcbb44 555549c 5710525 ea6ec54 439423b e83cd54 fa097da e83cd54 fa097da b18efa0 fa097da cf09d5c fa097da cf09d5c e83cd54 cf09d5c e83cd54 ea6ec54 b2395f1 ea6ec54 b2395f1 ea6ec54 abd725c ea6ec54 cf09d5c ea6ec54 cf09d5c ea6ec54 cf09d5c ea6ec54 cf09d5c ea6ec54 e83cd54 ea6ec54 abd725c ea6ec54 fa097da ea6ec54 fa097da ea6ec54 fa097da ea6ec54 fa097da ea6ec54 fa097da ea6ec54 d5ac657 ea6ec54 abd725c ea6ec54 b18efa0 ea6ec54 b18efa0 ea6ec54 fa097da ea6ec54 cf09d5c ea6ec54 fa097da ea6ec54 cf09d5c ea6ec54 fa097da ea6ec54 abd725c ea6ec54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import streamlit as st
import numpy as np
import torch
import whisper
from transformers import pipeline, AutoModelForAudioClassification, AutoFeatureExtractor
from deepface import DeepFace
import logging
import soundfile as sf
import tempfile
import cv2
from moviepy.editor import VideoFileClip
import time
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.pyplot as plt
# Create a cross-platform, writable cache directory for all libraries
CACHE_DIR = os.path.join(tempfile.gettempdir(), "affectlink_cache")
DEEPFACE_CACHE_PATH = os.path.join(CACHE_DIR, ".deepface", "weights")
os.makedirs(DEEPFACE_CACHE_PATH, exist_ok=True) # Proactively create the full path
os.environ['DEEPFACE_HOME'] = CACHE_DIR
os.environ['HF_HOME'] = CACHE_DIR
# --- Page Configuration ---
st.set_page_config(page_title="AffectLink Demo", page_icon="π", layout="wide")
st.title("AffectLink: Post-Hoc Emotion Analysis")
st.write("Upload a short video clip (under 30 seconds) to see a multimodal emotion analysis.")
# --- Logger Configuration ---
logging.basicConfig(level=logging.INFO)
# --- Emotion Mappings ---
UNIFIED_EMOTIONS = ['angry', 'happy', 'sad', 'neutral']
TEXT_TO_UNIFIED = {'neutral': 'neutral', 'joy': 'happy', 'sadness': 'sad', 'anger': 'angry'}
SER_TO_UNIFIED = {'neu': 'neutral', 'hap': 'happy', 'sad': 'sad', 'ang': 'angry'}
FACIAL_TO_UNIFIED = {'neutral': 'neutral', 'happy': 'happy', 'sad': 'sad', 'angry': 'angry', 'fear':None, 'surprise':None, 'disgust':None}
AUDIO_SAMPLE_RATE = 16000
# --- Model Loading (Staged) ---
@st.cache_resource
def load_audio_models():
with st.spinner("Loading audio analysis models..."):
whisper_model = whisper.load_model("tiny.en", download_root=os.path.join(CACHE_DIR, "whisper"))
text_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
ser_model_name = "superb/hubert-large-superb-er"
ser_feature_extractor = AutoFeatureExtractor.from_pretrained(ser_model_name)
ser_model = AutoModelForAudioClassification.from_pretrained(ser_model_name)
return whisper_model, text_classifier, ser_model, ser_feature_extractor
# Models will be loaded on demand
# --- Helper Functions for Analysis ---
def create_unified_vector(scores_dict, mapping_dict):
vector = np.zeros(len(UNIFIED_EMOTIONS))
total_score = 0
# Use .items() to iterate over keys and values
for label, score in scores_dict.items():
unified_label = mapping_dict.get(label)
if unified_label in UNIFIED_EMOTIONS:
vector[UNIFIED_EMOTIONS.index(unified_label)] += score
total_score += score
if total_score > 0:
vector /= total_score
return vector
def get_consistency_level(cosine_sim):
if np.isnan(cosine_sim): return "N/A"
if cosine_sim >= 0.8: return "High"
if cosine_sim >= 0.6: return "Medium"
if cosine_sim >= 0.3: return "Low"
return "Very Low"
# --- Helper Functions for Results Display ---
def process_timeline_to_df(timeline, mapping):
if not timeline: return pd.DataFrame(columns=UNIFIED_EMOTIONS)
df = pd.DataFrame.from_dict(timeline, orient='index')
df_unified = pd.DataFrame(index=df.index, columns=UNIFIED_EMOTIONS).fillna(0.0)
for raw_col in df.columns:
unified_col = mapping.get(raw_col)
if unified_col:
df_unified[unified_col] += df[raw_col]
return df_unified
def get_dominant_emotion_from_df(df):
if df.empty or df.sum().sum() == 0: return "N/A"
return df.sum().idxmax().capitalize()
def get_avg_unified_scores(df):
return df.mean().to_dict() if not df.empty else {}
def display_results():
"""Display the final analysis results using data from session state"""
st.header("Analysis Results")
# Get data from session state
full_transcription = st.session_state.get('full_transcription', 'No speech detected.')
ser_timeline = st.session_state.get('ser_timeline', {})
ter_timeline = st.session_state.get('ter_timeline', {})
fer_timeline = st.session_state.get('fer_timeline', {})
duration = st.session_state.get('duration', 0)
# Process timelines
fer_df = process_timeline_to_df(fer_timeline, FACIAL_TO_UNIFIED)
ser_df = process_timeline_to_df(ser_timeline, SER_TO_UNIFIED)
ter_df = process_timeline_to_df(ter_timeline, TEXT_TO_UNIFIED)
# Get dominant emotions
dominant_fer = get_dominant_emotion_from_df(fer_df)
dominant_ser = get_dominant_emotion_from_df(ser_df)
dominant_text = get_dominant_emotion_from_df(ter_df)
# Get average scores
fer_avg_scores = get_avg_unified_scores(fer_df)
ser_avg_scores = get_avg_unified_scores(ser_df)
ter_avg_scores = get_avg_unified_scores(ter_df)
# Calculate vectors and similarity
fer_vector = create_unified_vector(fer_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
ser_vector = create_unified_vector(ser_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
text_vector = create_unified_vector(ter_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
similarities = [cosine_similarity([fer_vector], [text_vector])[0][0], cosine_similarity([fer_vector], [ser_vector])[0][0], cosine_similarity([ser_vector], [text_vector])[0][0]]
avg_similarity = np.nanmean([s for s in similarities if not np.isnan(s)])
# Display transcription
st.subheader("Transcription")
st.markdown(f"> *{full_transcription}*")
st.divider()
# Display summary and timeline
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Multimodal Summary")
st.metric("Dominant Facial Emotion", dominant_fer)
st.metric("Dominant Text Emotion", dominant_text)
st.metric("Dominant Speech Emotion", dominant_ser)
st.metric("Emotion Consistency", get_consistency_level(avg_similarity), f"{avg_similarity:.2f} Avg. Cosine Similarity")
with col2:
st.subheader("Unified Emotion Timeline")
if duration > 0:
full_index = np.arange(0, duration, 0.5)
combined_df = pd.DataFrame(index=full_index)
# ECI Timeline Calculation
eci_timeline = {}
for t_stamp in full_index:
vectors = []
# Interpolate to get a value for any timestamp
fer_scores = fer_df.reindex(fer_df.index.union([t_stamp])).interpolate(method='linear').loc[t_stamp]
if not fer_scores.isnull().all():
vectors.append(create_unified_vector(fer_scores.to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
if int(t_stamp) in ser_df.index:
vectors.append(create_unified_vector(ser_df.loc[int(t_stamp)].to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
if int(t_stamp) in ter_df.index:
vectors.append(create_unified_vector(ter_df.loc[int(t_stamp)].to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
if len(vectors) >= 2:
sims = [cosine_similarity([v1], [v2])[0][0] for i, v1 in enumerate(vectors) for v2 in vectors[i+1:]]
eci_timeline[t_stamp] = np.mean(sims)
if not fer_df.empty:
fer_df_resampled = fer_df.reindex(fer_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
for e in UNIFIED_EMOTIONS: combined_df[f'Facial_{e}'] = fer_df_resampled.get(e, 0.0)
if not ser_df.empty:
ser_df_resampled = ser_df.reindex(ser_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
for e in UNIFIED_EMOTIONS: combined_df[f'Speech_{e}'] = ser_df_resampled.get(e, 0.0)
if not ter_df.empty:
ter_df_resampled = ter_df.reindex(ter_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
for e in UNIFIED_EMOTIONS: combined_df[f'Text_{e}'] = ter_df_resampled.get(e, 0.0)
if eci_timeline:
eci_series = pd.Series(eci_timeline).reindex(full_index).interpolate(method='linear')
combined_df['ECI'] = eci_series
combined_df.fillna(0, inplace=True)
if not combined_df.empty:
fig, ax = plt.subplots(figsize=(10, 5))
colors = {'happy': 'green', 'sad': 'blue', 'angry': 'red', 'neutral': 'gray'}
styles = {'Facial': '-', 'Speech': '--', 'Text': ':'}
for col in combined_df.columns:
if col == 'ECI': continue
modality, emotion = col.split('_')
if emotion in colors:
ax.plot(combined_df.index, combined_df[col], label=f'{modality} {emotion.capitalize()}', color=colors[emotion], linestyle=styles[modality], alpha=0.7)
if 'ECI' in combined_df.columns:
ax.plot(combined_df.index, combined_df['ECI'], label='Emotion Consistency', color='black', linewidth=2.5, alpha=0.9)
ax.set_title("Emotion Confidence Over Time (Normalized)")
ax.set_xlabel("Time (seconds)")
ax.set_ylabel("Confidence Score (0-1)")
ax.set_ylim(0, 1)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
plt.tight_layout()
st.pyplot(fig)
else:
st.write("No emotion data available to plot.")
else:
st.write("No timeline data available.")
# --- Two-Stage UI and Processing Logic ---
uploaded_file = st.file_uploader("Choose a video file...", type=["mp4", "mov", "avi", "mkv"])
# Initialize session state variables
if 'temp_video_path' not in st.session_state:
st.session_state.temp_video_path = None
if 'uploaded_file_id' not in st.session_state:
st.session_state.uploaded_file_id = None
# Clear previous results when a new file is uploaded
if uploaded_file is not None:
file_id = uploaded_file.file_id if hasattr(uploaded_file, 'file_id') else str(hash(uploaded_file.name + str(uploaded_file.size)))
if st.session_state.uploaded_file_id != file_id:
# New file uploaded, clear previous results
st.session_state.uploaded_file_id = file_id
for key in ['stage1_complete', 'stage2_complete', 'full_transcription', 'ser_timeline', 'ter_timeline', 'fer_timeline', 'duration']:
if key in st.session_state:
del st.session_state[key]
# Save the video file
if st.session_state.temp_video_path and os.path.exists(st.session_state.temp_video_path):
try:
os.unlink(st.session_state.temp_video_path)
except Exception:
pass
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tfile:
tfile.write(uploaded_file.read())
st.session_state.temp_video_path = tfile.name
if uploaded_file is not None and st.session_state.temp_video_path:
st.video(st.session_state.temp_video_path)
# Stage 1: Audio & Text Analysis
if not st.session_state.get('stage1_complete', False):
if st.button("π΅ Step 1: Analyze Audio & Text", type="primary"):
try:
# Load audio models
whisper_model, text_classifier, ser_model, ser_feature_extractor = load_audio_models()
ser_timeline, ter_timeline = {}, {}
full_transcription = "No speech detected."
video_clip = VideoFileClip(st.session_state.temp_video_path)
duration = video_clip.duration
st.session_state.duration = duration
with st.spinner("Analyzing audio and text..."):
if video_clip.audio:
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as taudio:
video_clip.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
temp_audio_path = taudio.name
# Transcription
whisper_result = whisper_model.transcribe(
temp_audio_path,
word_timestamps=True,
fp16=False,
condition_on_previous_text=False
)
full_transcription = whisper_result['text'].strip()
# Speech emotion recognition
audio_array, _ = sf.read(temp_audio_path, dtype='float32')
if audio_array.ndim == 2:
audio_array = audio_array.mean(axis=1)
for i in range(int(duration)):
start_sample, end_sample = i * AUDIO_SAMPLE_RATE, (i + 1) * AUDIO_SAMPLE_RATE
chunk = audio_array[start_sample:end_sample]
if len(chunk) > 400:
inputs = ser_feature_extractor(chunk, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt", padding=True)
with torch.no_grad():
logits = ser_model(**inputs).logits
scores = torch.nn.functional.softmax(logits, dim=1).squeeze()
ser_timeline[i] = {ser_model.config.id2label[k]: score.item() for k, score in enumerate(scores)}
# Text emotion recognition
words_in_segment = [seg['word'] for seg in whisper_result.get('segments', []) if seg['start'] >= i and seg['start'] < i+1 for seg in seg.get('words', [])]
segment_text = " ".join(words_in_segment).strip()
if segment_text:
text_emotions = text_classifier(segment_text)[0]
ter_timeline[i] = {emo['label']: emo['score'] for emo in text_emotions}
# Clean up audio file
if os.path.exists(temp_audio_path):
os.unlink(temp_audio_path)
video_clip.close()
# Store results in session state
st.session_state.full_transcription = full_transcription
st.session_state.ser_timeline = ser_timeline
st.session_state.ter_timeline = ter_timeline
st.session_state.stage1_complete = True
st.success("β
Audio analysis complete! Speech and text emotions have been analyzed.")
st.rerun()
except Exception as e:
st.error(f"Error during audio analysis: {str(e)}")
else:
st.success("β
Stage 1 (Audio & Text Analysis) - Complete!")
# Stage 2: Facial Analysis
if st.session_state.get('stage1_complete', False) and not st.session_state.get('stage2_complete', False):
if st.button("π Step 2: Analyze Facial Expressions", type="primary"):
try:
fer_timeline = {}
with st.spinner("Analyzing facial expressions..."):
cap = cv2.VideoCapture(st.session_state.temp_video_path)
fps = cap.get(cv2.CAP_PROP_FPS) or 30
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
timestamp = frame_count / fps
if frame_count % int(fps) == 0:
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
if isinstance(analysis, list) and len(analysis) > 0:
fer_timeline[timestamp] = {k: v / 100.0 for k, v in analysis[0]['emotion'].items()}
frame_count += 1
cap.release()
# Store results in session state
st.session_state.fer_timeline = fer_timeline
st.session_state.stage2_complete = True
st.success("β
Facial analysis complete! All analyses are now finished.")
st.rerun()
except Exception as e:
st.error(f"Error during facial analysis: {str(e)}")
elif st.session_state.get('stage2_complete', False):
st.success("β
Stage 2 (Facial Expression Analysis) - Complete!")
# Display results if both stages are complete
if st.session_state.get('stage1_complete', False) and st.session_state.get('stage2_complete', False):
display_results()
# Cleanup on app restart or when session ends
if st.session_state.temp_video_path and not uploaded_file:
try:
if os.path.exists(st.session_state.temp_video_path):
os.unlink(st.session_state.temp_video_path)
st.session_state.temp_video_path = None
except Exception:
pass |