File size: 11,653 Bytes
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba4dcb
8371eb2
 
dba4dcb
 
8371eb2
 
 
 
dba4dcb
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba4dcb
 
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad72ac
 
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328c65b
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba4dcb
 
 
 
8371eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
HuggingFace Space: AST Training Dashboard
Live monitoring and model card generation
"""

import gradio as gr
import json
import time
from pathlib import Path
import plotly.graph_objects as go
from plotly.subplots import make_subplots

try:
    from adaptive_sparse_training import AdaptiveSparseTrainer, ASTConfig
    import torch
    import torchvision
    import timm
    HAS_DEPS = True
except ImportError:
    HAS_DEPS = False


class ASTDashboard:
    """Real-time AST training dashboard"""

    def __init__(self):
        self.active_training = None
        self.training_history = []

    def start_training(
        self,
        model_name: str,
        dataset: str,
        activation_rate: float,
        epochs: int,
        progress=gr.Progress()
    ):
        """Start AST training with live updates"""

        if not HAS_DEPS:
            return "❌ Dependencies not installed", None, None

        progress(0, desc="Initializing...")

        # Load dataset (CIFAR-10 for demo)
        train_loader, val_loader = self._get_dataloaders(dataset)

        # Create model
        progress(0.1, desc="Creating model...")
        if model_name == "resnet18":
            model = torchvision.models.resnet18(num_classes=10)
        else:
            model = timm.create_model(model_name, pretrained=False, num_classes=10)

        # AST Config (CPU mode for HuggingFace free tier)
        config = ASTConfig(
            target_activation_rate=activation_rate,
            use_amp=False,  # Disable AMP on CPU
            device='cpu'
        )

        # Start training
        progress(0.2, desc="Starting training...")
        model = model.to('cpu')
        trainer = AdaptiveSparseTrainer(model, train_loader, val_loader, config)

        self.training_history = []

        for epoch in range(epochs):
            progress((epoch + 1) / epochs, desc=f"Epoch {epoch+1}/{epochs}")

            # Train one epoch
            epoch_stats = trainer.train_epoch(epoch)
            val_acc = trainer.evaluate()

            # Store history
            self.training_history.append({
                "epoch": epoch + 1,
                "val_acc": val_acc,
                "activation_rate": epoch_stats.get("activation_rate", activation_rate),
                "threshold": epoch_stats.get("threshold", 1.0),
            })

            # Update dashboard
            if (epoch + 1) % 5 == 0 or epoch == epochs - 1:
                status = self._format_status(epoch + 1, epochs, val_acc, activation_rate)
                plot = self._create_plot()
                yield status, plot, None

        # Generate model card
        model_card = self._generate_model_card(model_name, activation_rate)

        final_status = f"βœ… Training complete! Best accuracy: {max([h['val_acc'] for h in self.training_history]):.2%}"

        yield final_status, self._create_plot(), model_card

    def _get_dataloaders(self, dataset: str):
        """Get data loaders (CIFAR-10 demo)"""
        import torchvision.transforms as transforms
        from torch.utils.data import DataLoader

        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        train_dataset = torchvision.datasets.CIFAR10(
            root='./data', train=True, download=True, transform=transform
        )
        val_dataset = torchvision.datasets.CIFAR10(
            root='./data', train=False, download=True, transform=transform
        )

        train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=0)
        val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False, num_workers=0)

        return train_loader, val_loader

    def _format_status(self, epoch: int, total_epochs: int, accuracy: float, activation_rate: float):
        """Format training status"""
        return f"""
### πŸš€ Training in Progress

**Epoch:** {epoch}/{total_epochs}
**Accuracy:** {accuracy:.2%}
**Activation Rate:** {activation_rate:.1%}
**Energy Savings:** ~{(1-activation_rate)*100:.0f}%

*Updating every 5 epochs...*
"""

    def _create_plot(self):
        """Create live training plot"""
        if not self.training_history:
            return None

        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=("Validation Accuracy", "Activation Rate", "Threshold Evolution", "Energy Savings"),
        )

        epochs = [h["epoch"] for h in self.training_history]
        accuracies = [h["val_acc"] * 100 for h in self.training_history]
        activation_rates = [h["activation_rate"] * 100 for h in self.training_history]
        thresholds = [h["threshold"] for h in self.training_history]
        savings = [(1 - h["activation_rate"]) * 100 for h in self.training_history]

        # Accuracy plot
        fig.add_trace(
            go.Scatter(x=epochs, y=accuracies, mode='lines+markers', name='Val Accuracy',
                      line=dict(color='#3498db', width=3)),
            row=1, col=1
        )

        # Activation rate plot
        fig.add_trace(
            go.Scatter(x=epochs, y=activation_rates, mode='lines+markers', name='Activation Rate',
                      line=dict(color='#e74c3c', width=3)),
            row=1, col=2
        )

        # Threshold plot
        fig.add_trace(
            go.Scatter(x=epochs, y=thresholds, mode='lines+markers', name='Threshold',
                      line=dict(color='#f39c12', width=3)),
            row=2, col=1
        )

        # Energy savings plot
        fig.add_trace(
            go.Scatter(x=epochs, y=savings, mode='lines+markers', name='Energy Savings',
                      line=dict(color='#27ae60', width=3), fill='tozeroy'),
            row=2, col=2
        )

        fig.update_xaxes(title_text="Epoch")
        fig.update_yaxes(title_text="Accuracy (%)", row=1, col=1)
        fig.update_yaxes(title_text="Activation (%)", row=1, col=2)
        fig.update_yaxes(title_text="Threshold", row=2, col=1)
        fig.update_yaxes(title_text="Savings (%)", row=2, col=2)

        fig.update_layout(height=600, showlegend=False)

        return fig

    def _generate_model_card(self, model_name: str, activation_rate: float):
        """Generate HuggingFace model card"""

        best_acc = max([h["val_acc"] for h in self.training_history])
        energy_savings = (1 - activation_rate) * 100

        return f"""---
tags:
- adaptive-sparse-training
- energy-efficient
- sustainability
metrics:
- accuracy
- energy_savings
---

# {model_name} (AST-Trained)

**Trained with {energy_savings:.0f}% less energy than standard training** ⚑

## Model Details
- **Architecture:** {model_name}
- **Dataset:** CIFAR-10
- **Training Method:** Adaptive Sparse Training (AST)
- **Target Activation Rate:** {activation_rate:.0%}

## Performance
- **Accuracy:** {best_acc:.2%}
- **Energy Savings:** {energy_savings:.0f}%
- **Training Epochs:** {len(self.training_history)}

## Sustainability Report
This model was trained using Adaptive Sparse Training, which dynamically selects
the most important training samples. This resulted in:

- ⚑ **{energy_savings:.0f}% energy savings** compared to standard training
- 🌍 **Lower carbon footprint**
- ⏱️ **Faster training time**
- 🎯 **Maintained accuracy** (minimal degradation)

## How to Use

```python
import torch
from torchvision import models

# Load model
model = models.{model_name}(num_classes=10)
model.load_state_dict(torch.load("pytorch_model.bin"))
model.eval()

# Inference
# ... (your inference code)
```

## Training Details

**AST Configuration:**
- Target Activation Rate: {activation_rate:.0%}
- Adaptive PI Controller: Enabled
- Mixed Precision (AMP): Enabled

## Reproducing This Model

```bash
pip install adaptive-sparse-training

python -c "
from adaptive_sparse_training import AdaptiveSparseTrainer, ASTConfig
config = ASTConfig(target_activation_rate={activation_rate})
# ... (full training code)
"
```

## Citation

If you use this model or AST, please cite:

```bibtex
@software{{adaptive_sparse_training,
    title={{Adaptive Sparse Training}},
    author={{Idiakhoa, Oluwafemi}},
    year={{2024}},
    url={{https://github.com/oluwafemidiakhoa/adaptive-sparse-training}}
}}
```

## Acknowledgments

Trained using the `adaptive-sparse-training` package. Special thanks to the PyTorch and HuggingFace communities.

---

*This model card was auto-generated by the AST Training Dashboard.*
"""


# Initialize dashboard
dashboard = ASTDashboard()


# Gradio Interface
def create_demo():
    """Create Gradio demo interface"""

    with gr.Blocks(title="AST Training Dashboard") as demo:
        gr.Markdown("""
        # ⚑ Adaptive Sparse Training Dashboard

        Train models with **60-70% less energy** while maintaining accuracy!

        This demo trains a model on CIFAR-10 using AST and generates a HuggingFace model card.
        """)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### βš™οΈ Configuration")

                model_name = gr.Dropdown(
                    choices=["resnet18", "efficientnet_b0", "mobilenetv3_small_100"],
                    value="resnet18",
                    label="Model Architecture"
                )

                dataset = gr.Dropdown(
                    choices=["cifar10"],
                    value="cifar10",
                    label="Dataset"
                )

                activation_rate = gr.Slider(
                    minimum=0.2,
                    maximum=0.8,
                    value=0.35,
                    step=0.05,
                    label="Target Activation Rate (lower = more savings)"
                )

                gr.Markdown(f"**Energy Savings:** ~{(1-0.35)*100:.0f}%")

                epochs = gr.Slider(
                    minimum=5,
                    maximum=50,
                    value=10,
                    step=5,
                    label="Training Epochs"
                )

                train_btn = gr.Button("πŸš€ Start Training", variant="primary", size="lg")

            with gr.Column(scale=2):
                gr.Markdown("### πŸ“Š Live Training Metrics")

                status = gr.Markdown("*Ready to train...*")
                plot = gr.Plot()

        with gr.Row():
            with gr.Column():
                gr.Markdown("### πŸ“ Generated Model Card")
                model_card = gr.Textbox(
                    label="HuggingFace Model Card (Markdown)",
                    lines=20,
                    max_lines=30,
                )

                gr.Markdown("""
                **Next Steps:**
                1. Copy the model card above
                2. Create a new model on [HuggingFace Hub](https://huggingface.co/new)
                3. Paste the model card into `README.md`
                4. Upload your trained model weights
                """)

        # Training logic
        train_btn.click(
            fn=dashboard.start_training,
            inputs=[model_name, dataset, activation_rate, epochs],
            outputs=[status, plot, model_card],
        )

        gr.Markdown("""
        ---

        ## πŸ“š Learn More

        - πŸ“¦ [PyPI Package](https://pypi.org/project/adaptive-sparse-training/)
        - πŸ™ [GitHub Repo](https://github.com/oluwafemidiakhoa/adaptive-sparse-training)
        - πŸ“– [Documentation](https://github.com/oluwafemidiakhoa/adaptive-sparse-training#readme)

        **Made with ❀️ using Adaptive Sparse Training**
        """)

    return demo


if __name__ == "__main__":
    demo = create_demo()
    demo.launch()