mgbam commited on
Commit
ef42c1d
Β·
verified Β·
1 Parent(s): 8371eb2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -1
README.md CHANGED
@@ -9,4 +9,80 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  ---
11
 
12
+ # AST Training Dashboard - HuggingFace Space
13
+
14
+ Interactive dashboard for training models with Adaptive Sparse Training (AST).
15
+
16
+ ## Features
17
+
18
+ - πŸš€ **Live Training**: Watch your model train in real-time
19
+ - πŸ“Š **Energy Tracking**: See energy savings as you train
20
+ - 🎯 **Model Card Generation**: Auto-generate HuggingFace model cards
21
+ - ⚑ **60-70% Energy Savings**: Train faster with minimal accuracy loss
22
+
23
+ ## Quick Start
24
+
25
+ ### Deploy to HuggingFace Spaces
26
+
27
+ 1. Create new Space at https://huggingface.co/spaces
28
+ 2. Choose **Gradio** as SDK
29
+ 3. Upload files from this directory:
30
+ - `app.py`
31
+ - `requirements.txt`
32
+ - `README.md`
33
+ 4. Space will auto-deploy!
34
+
35
+ ### Run Locally
36
+
37
+ ```bash
38
+ cd hf_space
39
+ pip install -r requirements.txt
40
+ python app.py
41
+ ```
42
+
43
+ Then open http://localhost:7860
44
+
45
+ ## Usage
46
+
47
+ 1. **Select Model**: Choose from ResNet18, EfficientNet, MobileNet
48
+ 2. **Set Activation Rate**: Lower = more energy savings (0.35 recommended)
49
+ 3. **Choose Epochs**: 30-50 epochs for good results
50
+ 4. **Start Training**: Click "Start Training" and watch live metrics
51
+ 5. **Get Model Card**: Copy auto-generated card for HuggingFace Hub
52
+
53
+ ## Example Results
54
+
55
+ Training ResNet18 on CIFAR-10 with AST (activation_rate=0.35):
56
+
57
+ - **Accuracy**: 92.1% (vs 92.3% baseline)
58
+ - **Energy Savings**: 65%
59
+ - **Training Time**: 2.8h (vs 7.2h baseline)
60
+
61
+ ## About AST
62
+
63
+ Adaptive Sparse Training (AST) automatically selects the most important training samples
64
+ per batch, reducing compute by 60-70% while maintaining accuracy.
65
+
66
+ **How it works:**
67
+ 1. Computes significance score (loss + entropy) for each sample
68
+ 2. PI controller dynamically adjusts selection threshold
69
+ 3. Only backpropagates through "hard" samples
70
+ 4. Result: Same accuracy, way less compute
71
+
72
+ ## Links
73
+
74
+ - πŸ“¦ [PyPI Package](https://pypi.org/project/adaptive-sparse-training/)
75
+ - πŸ™ [GitHub](https://github.com/oluwafemidiakhoa/adaptive-sparse-training)
76
+ - πŸ“š [Full Documentation](https://github.com/oluwafemidiakhoa/adaptive-sparse-training#readme)
77
+
78
+ ## Citation
79
+
80
+ ```bibtex
81
+ @software{adaptive_sparse_training,
82
+ title={Adaptive Sparse Training},
83
+ author={Idiakhoa, Oluwafemi},
84
+ year={2024},
85
+ url={https://github.com/oluwafemidiakhoa/adaptive-sparse-training}
86
+ }
87
+ ```
88
+