ChatbotRAG / main.py
minhvtt's picture
Update main.py
eda7f22 verified
raw
history blame
20.4 kB
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from PIL import Image
import io
import numpy as np
import os
from datetime import datetime
from pymongo import MongoClient
from huggingface_hub import InferenceClient
from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService
# Initialize FastAPI app
app = FastAPI(
title="Event Social Media Embeddings & ChatbotRAG API",
description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
version="2.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize services
print("Initializing services...")
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
qdrant_service = QdrantVectorService(
collection_name=collection_name,
vector_size=embedding_service.get_embedding_dimension()
)
print(f"✓ Qdrant collection: {collection_name}")
# MongoDB connection
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/")
mongo_client = MongoClient(mongodb_uri)
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
documents_collection = db["documents"]
chat_history_collection = db["chat_history"]
print("✓ MongoDB connected")
# Hugging Face token
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
print("✓ Hugging Face token configured")
print("✓ Services initialized successfully")
# Pydantic models for embeddings
class SearchRequest(BaseModel):
text: Optional[str] = None
limit: int = 10
score_threshold: Optional[float] = None
text_weight: float = 0.5
image_weight: float = 0.5
class SearchResponse(BaseModel):
id: str
confidence: float
metadata: dict
class IndexResponse(BaseModel):
success: bool
id: str
message: str
# Pydantic models for ChatbotRAG
class ChatRequest(BaseModel):
message: str
use_rag: bool = True
top_k: int = 3
system_message: Optional[str] = "You are a helpful AI assistant."
max_tokens: int = 512
temperature: float = 0.7
top_p: float = 0.95
hf_token: Optional[str] = None
class ChatResponse(BaseModel):
response: str
context_used: List[Dict]
timestamp: str
class AddDocumentRequest(BaseModel):
text: str
metadata: Optional[Dict] = None
class AddDocumentResponse(BaseModel):
success: bool
doc_id: str
message: str
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "running",
"service": "Event Social Media Embeddings & ChatbotRAG API",
"embedding_model": "Jina CLIP v2",
"vector_db": "Qdrant",
"language_support": "Vietnamese + 88 other languages",
"endpoints": {
"embeddings": {
"POST /index": "Index data với text/image",
"POST /search": "Hybrid search",
"POST /search/text": "Text search",
"POST /search/image": "Image search",
"DELETE /delete/{doc_id}": "Delete document",
"GET /document/{doc_id}": "Get document",
"GET /stats": "Collection statistics"
},
"chatbot_rag": {
"POST /chat": "Chat với RAG",
"POST /documents": "Add document to knowledge base",
"POST /rag/search": "Search in knowledge base",
"GET /history": "Get chat history",
"DELETE /documents/{doc_id}": "Delete document from knowledge base"
}
}
}
@app.post("/index", response_model=IndexResponse)
async def index_data(
id: str = Form(...),
text: str = Form(...),
image: Optional[UploadFile] = File(None)
):
"""
Index data vào vector database
Body:
- id: Document ID (event ID, post ID, etc.)
- text: Text content (tiếng Việt supported)
- image: Image file (optional)
Returns:
- success: True/False
- id: Document ID
- message: Status message
"""
try:
# Prepare embeddings
text_embedding = None
image_embedding = None
# Encode text (tiếng Việt)
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image nếu có
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Combine embeddings
if text_embedding is not None and image_embedding is not None:
# Average của text và image embeddings
combined_embedding = np.mean([text_embedding, image_embedding], axis=0)
elif text_embedding is not None:
combined_embedding = text_embedding
elif image_embedding is not None:
combined_embedding = image_embedding
else:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image")
# Normalize
combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)
# Index vào Qdrant
metadata = {
"text": text,
"has_image": image is not None,
"image_filename": image.filename if image else None
}
result = qdrant_service.index_data(
doc_id=id,
embedding=combined_embedding,
metadata=metadata
)
return IndexResponse(
success=True,
id=result["original_id"], # Trả về MongoDB ObjectId
message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")
@app.post("/search", response_model=List[SearchResponse])
async def search(
text: Optional[str] = Form(None),
image: Optional[UploadFile] = File(None),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None),
text_weight: float = Form(0.5),
image_weight: float = Form(0.5)
):
"""
Search similar documents bằng text và/hoặc image
Body:
- text: Query text (tiếng Việt supported)
- image: Query image (optional)
- limit: Số lượng kết quả (default: 10)
- score_threshold: Minimum confidence score (0-1)
- text_weight: Weight cho text search (default: 0.5)
- image_weight: Weight cho image search (default: 0.5)
Returns:
- List of results với id, confidence, và metadata
"""
try:
# Prepare query embeddings
text_embedding = None
image_embedding = None
# Encode text query
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image query
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Validate input
if text_embedding is None and image_embedding is None:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")
# Hybrid search với Qdrant
results = qdrant_service.hybrid_search(
text_embedding=text_embedding,
image_embedding=image_embedding,
text_weight=text_weight,
image_weight=image_weight,
limit=limit,
score_threshold=score_threshold,
ef=256 # High accuracy search
)
# Format response
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/text", response_model=List[SearchResponse])
async def search_by_text(
text: str = Form(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng text (tiếng Việt)
Body:
- text: Query text (tiếng Việt)
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode text
text_embedding = embedding_service.encode_text(text)
# Search
results = qdrant_service.search(
query_embedding=text_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/image", response_model=List[SearchResponse])
async def search_by_image(
image: UploadFile = File(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng image
Body:
- image: Query image
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode image
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Search
results = qdrant_service.search(
query_embedding=image_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.delete("/delete/{doc_id}")
async def delete_document(doc_id: str):
"""
Delete document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID to delete
Returns:
- Success message
"""
try:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Đã xóa document {doc_id}"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")
@app.get("/document/{doc_id}")
async def get_document(doc_id: str):
"""
Get document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- Document data
"""
try:
doc = qdrant_service.get_by_id(doc_id)
if doc:
return {
"success": True,
"data": doc
}
raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")
@app.get("/stats")
async def get_stats():
"""
Lấy thông tin thống kê collection
Returns:
- Collection statistics
"""
try:
info = qdrant_service.get_collection_info()
return info
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")
# ============================================
# ChatbotRAG Endpoints
# ============================================
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint với RAG
Body:
- message: User message
- use_rag: Enable RAG retrieval (default: true)
- top_k: Number of documents to retrieve (default: 3)
- system_message: System prompt (optional)
- max_tokens: Max tokens for response (default: 512)
- temperature: Temperature for generation (default: 0.7)
- hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)
Returns:
- response: Generated response
- context_used: Retrieved context documents
- timestamp: Response timestamp
"""
try:
# Retrieve context if RAG enabled
context_used = []
if request.use_rag:
# Generate query embedding
query_embedding = embedding_service.encode_text(request.message)
# Search in Qdrant
results = qdrant_service.search(
query_embedding=query_embedding,
limit=request.top_k,
score_threshold=0.5
)
context_used = results
# Build context text
context_text = ""
if context_used:
context_text = "\n\nRelevant Context:\n"
for i, doc in enumerate(context_used, 1):
doc_text = doc["metadata"].get("text", "")
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# Add context to system message
system_message = f"{request.system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
else:
system_message = request.system_message
# Use token from request or fallback to env
token = request.hf_token or hf_token
# Generate response
if not token:
response = f"""[LLM Response Placeholder]
Context retrieved: {len(context_used)} documents
User question: {request.message}
To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body
Example:
{{
"message": "Your question",
"hf_token": "hf_xxxxxxxxxxxxx"
}}
"""
else:
try:
client = InferenceClient(
token=token,
model="openai/gpt-oss-20b"
)
# Build messages
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": request.message}
]
# Generate response
response = ""
for msg in client.chat_completion(
messages,
max_tokens=request.max_tokens,
stream=True,
temperature=request.temperature,
top_p=request.top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
response += choices[0].delta.content
except Exception as e:
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
# Save to history
chat_data = {
"user_message": request.message,
"assistant_response": response,
"context_used": context_used,
"timestamp": datetime.utcnow()
}
chat_history_collection.insert_one(chat_data)
return ChatResponse(
response=response,
context_used=context_used,
timestamp=datetime.utcnow().isoformat()
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
"""
Add document to knowledge base
Body:
- text: Document text
- metadata: Additional metadata (optional)
Returns:
- success: True/False
- doc_id: MongoDB document ID
- message: Status message
"""
try:
# Save to MongoDB
doc_data = {
"text": request.text,
"metadata": request.metadata or {},
"created_at": datetime.utcnow()
}
result = documents_collection.insert_one(doc_data)
doc_id = str(result.inserted_id)
# Generate embedding
embedding = embedding_service.encode_text(request.text)
# Index to Qdrant
qdrant_service.index_data(
doc_id=doc_id,
embedding=embedding,
metadata={
"text": request.text,
"source": "api",
**(request.metadata or {})
}
)
return AddDocumentResponse(
success=True,
doc_id=doc_id,
message=f"Document added successfully with ID: {doc_id}"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/rag/search", response_model=List[SearchResponse])
async def rag_search(
query: str = Form(...),
top_k: int = Form(5),
score_threshold: Optional[float] = Form(0.5)
):
"""
Search in knowledge base
Body:
- query: Search query
- top_k: Number of results (default: 5)
- score_threshold: Minimum score (default: 0.5)
Returns:
- results: List of matching documents
"""
try:
# Generate query embedding
query_embedding = embedding_service.encode_text(query)
# Search in Qdrant
results = qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=score_threshold
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
"""
Get chat history
Query params:
- limit: Number of messages to return (default: 10)
- skip: Number of messages to skip (default: 0)
Returns:
- history: List of chat messages
"""
try:
history = list(
chat_history_collection
.find({}, {"_id": 0})
.sort("timestamp", -1)
.skip(skip)
.limit(limit)
)
# Convert datetime to string
for msg in history:
if "timestamp" in msg:
msg["timestamp"] = msg["timestamp"].isoformat()
return {
"history": history,
"total": chat_history_collection.count_documents({})
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.delete("/documents/{doc_id}")
async def delete_document_from_kb(doc_id: str):
"""
Delete document from knowledge base
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- success: True/False
- message: Status message
"""
try:
# Delete from MongoDB
result = documents_collection.delete_one({"_id": doc_id})
# Delete from Qdrant
if result.deleted_count > 0:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
else:
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)