Spaces:
Sleeping
Sleeping
File size: 8,244 Bytes
a71ca97 49f9ca5 a71ca97 d039217 a71ca97 d039217 a71ca97 29c9d98 80cf484 a71ca97 d039217 a71ca97 d039217 a71ca97 d039217 a71ca97 d039217 a71ca97 d039217 a71ca97 d039217 29c9d98 a71ca97 d039217 a71ca97 29c9d98 a71ca97 d039217 a71ca97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import math
import random
# Load and preprocess data
df = pd.read_csv('Hurun_Global_Rich_List_2025_COORD.csv')
df['Wealth $B'] = pd.to_numeric(df['Wealth $B'], errors='coerce')
df = df.dropna(subset=['lat', 'lon'])
df['Log Wealth'] = np.log10(df['Wealth $B'])
# Ensure "Age" is an integer
df['Age'] = pd.to_numeric(df['Age'], errors='coerce').astype('Int64')
# Extract country from location
df['Country'] = df['Location'].str.split(',').str[-1].str.strip()
# Add jitter to coordinates to prevent overlapping
def add_jitter(coords, jitter_range=0.2):
"""Add random jitter to coordinates to prevent overlapping markers"""
coord_counts = {}
jittered_coords = []
for coord in coords:
rounded = (round(coord[0], 2), round(coord[1], 2))
count = coord_counts.get(rounded, 0)
coord_counts[rounded] = count + 1
if count > 0:
angle = 2 * math.pi * (count / 8)
distance = jitter_range * min(0.5 + count/10, 1.5)
jitter_lat = math.sin(angle) * distance
jitter_lon = math.cos(angle) * distance
jittered_coords.append((coord[0] + jitter_lat, coord[1] + jitter_lon))
else:
jittered_coords.append(coord)
return jittered_coords
# Create logarithmic scale for visualization
def create_globe():
df['Size'] = df['Log Wealth'] * 8
df['Color Value'] = df['Log Wealth']
coords = list(zip(df['lat'], df['lon']))
jittered_coords = add_jitter(coords)
df['lat_jitter'] = [c[0] for c in jittered_coords]
df['lon_jitter'] = [c[1] for c in jittered_coords]
min_log = df['Log Wealth'].min()
max_log = df['Log Wealth'].max()
wealth_ticks = [1, 10, 30, 100, 300, 1000]
log_ticks = [math.log10(x) for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
tick_labels = [f"${x}B" for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
fig = go.Figure(go.Scattergeo(
lon = df['lon_jitter'],
lat = df['lat_jitter'],
text = df.apply(lambda row: (
f"<b>{row['Name']}</b><br>"
f"Rank: {row['Rank']}<br>"
f"Wealth: ${row['Wealth $B']}B<br>"
f"Enterprise: {row['Enterprise']}<br>"
f"Sector: {row['Sector']}<br>"
f"Age: {row['Age']}<br>"
f"Location: {row['Location']}"
), axis=1),
marker = dict(
size = df['Size'],
color = df['Color Value'],
colorscale = 'Turbo',
opacity = 0.7,
line_color='rgb(40,40,40)',
line_width=0.5,
sizemode = 'diameter',
colorbar = dict(
title="Wealth (Billion USD)",
thickness=15,
len=0.35,
bgcolor='rgba(255,255,255,0.5)',
tickvals = log_ticks,
ticktext = tick_labels
)
),
hoverinfo = 'text',
name = ''
))
fig.update_geos(
projection_type="orthographic",
showcoastlines=True,
coastlinecolor="RebeccaPurple",
showland=True,
landcolor="rgb(243, 243, 243)",
showocean=True,
oceancolor="rgb(217, 244, 252)"
)
fig.update_layout(
height=500,
margin={"r":0,"t":0,"l":0,"b":0},
paper_bgcolor='rgba(0,0,0,0)',
geo=dict(bgcolor='rgba(0,0,0,0)')
)
return fig
# Create distribution plots
def create_age_plot():
fig = px.histogram(df, x='Age', nbins=20,
title='Age Distribution',
color_discrete_sequence=['#636EFA'])
fig.update_layout(height=300)
return fig
def create_country_plot():
top_countries = df['Country'].value_counts().head(10)
fig = px.bar(top_countries,
title='Top 10 Countries',
labels={'value': 'Count', 'index': 'Country'},
color=top_countries.index,
color_discrete_sequence=px.colors.qualitative.Pastel)
fig.update_layout(height=300, showlegend=False)
return fig
def create_gender_plot():
gender_counts = df['Sex'].value_counts()
fig = px.pie(gender_counts,
names=gender_counts.index,
values=gender_counts.values,
title='Gender Distribution',
hole=0.4)
fig.update_layout(height=300)
return fig
def create_sector_plot():
top_sectors = df['Sector'].value_counts().head(10)
fig = px.bar(top_sectors,
title='Top 10 Sectors',
labels={'value': 'Count', 'index': 'Sector'},
color=top_sectors.index,
color_discrete_sequence=px.colors.qualitative.Pastel)
fig.update_layout(height=300, showlegend=False)
return fig
# Create display dataframe without extra columns
display_columns = ['Rank', 'Rank change', 'Wealth $B', 'Enterprise', 'Sector',
'Name', 'Sex', 'Age', 'Sidekick', 'Location']
display_df = df[display_columns].sort_values('Rank').reset_index(drop=True)
# Function to update table based on search and sort
def update_table(search_term, sort_column, sort_order):
temp_df = df[display_columns].copy()
# Filter based on search term
if search_term:
search_term = search_term.lower()
temp_df = temp_df[temp_df.apply(lambda row: search_term in ' '.join(map(str, row)).lower(), axis=1)]
# Sort based on selected column and order
if sort_column:
ascending = (sort_order == "Ascending")
temp_df = temp_df.sort_values(by=sort_column, ascending=ascending)
return temp_df.reset_index(drop=True)
# Create Gradio interface
with gr.Blocks(theme='SebastianBravo/simci_css', css="#my_dataframe th { font-size: 12px !important; } #my_dataframe td { font-size: 10px !important; }") as demo:
gr.Markdown("# Global Billionaires Dashboard 2025")
gr.Markdown("Interactive visualisation of the world's wealthiest individuals")
with gr.Row():
with gr.Column():
gr.Markdown("### π Global Wealth Distribution")
gr.Markdown("Circle size and color intensity both represent wealth on a logarithmic scale")
gr.Markdown("Nearby points are slightly randomized to prevent overlapping")
globe = gr.Plot(create_globe(), show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown("### π Distribution Analysis")
with gr.Row():
with gr.Column():
age_plot = gr.Plot(create_age_plot(), show_label=False)
with gr.Column():
country_plot = gr.Plot(create_country_plot(), show_label=False)
with gr.Row():
with gr.Column():
gender_plot = gr.Plot(create_gender_plot(), show_label=False)
with gr.Column():
sector_plot = gr.Plot(create_sector_plot(), show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown("### π Full Billionaire Data")
# Add search and sort controls
with gr.Row():
search_box = gr.Textbox(label="Search", placeholder="Type to search")
with gr.Column():
sort_dropdown = gr.Dropdown(choices=display_columns, label="Sort by", value="Rank")
sort_order = gr.Dropdown(choices=["Ascending", "Descending"], label="Sort order", value="Ascending")
# Dataframe with custom elem_id
data_table = gr.Dataframe(
value=display_df,
interactive=False,
wrap=True,
col_count=(len(display_columns), "fixed"),
elem_id="my_dataframe"
)
# Set up event listeners for search and sort
search_box.change(update_table, inputs=[search_box, sort_dropdown, sort_order], outputs=data_table)
sort_dropdown.change(update_table, inputs=[search_box, sort_dropdown, sort_order], outputs=data_table)
sort_order.change(update_table, inputs=[search_box, sort_dropdown, sort_order], outputs=data_table)
demo.launch()
|