HBV_AI_Assistant / INTEGRATION_SUMMARY.md
moazx's picture
Update the Assessment Results
4a17bbc

LlamaParse Integration Summary

Changes Made

1. core/data_loaders.py - Complete Replacement

Status: βœ… Complete

Changes:

  • ❌ Removed: PyMuPDF4LLMLoader and TesseractBlobParser
  • βœ… Added: LlamaParse and SimpleDirectoryReader from llama-index
  • βœ… Added: os module for environment variable handling

New Functions:

  1. load_pdf_documents(pdf_path, api_key=None) - Basic LlamaParse loader
  2. load_pdf_documents_advanced(pdf_path, api_key=None, premium_mode=False) - Advanced loader with premium features
  3. load_multiple_pdfs(pdf_directory, api_key=None, file_pattern="*.pdf") - Batch processing

Key Features:

  • Medical document optimized parsing instructions
  • Accurate page numbering with split_by_page=True
  • Preserves borderless tables and complex layouts
  • Enhanced metadata tracking
  • Premium mode option for GPT-4o parsing

2. core/config.py - Configuration Updates

Status: βœ… Complete

Changes:

# Added to Settings class
LLAMA_CLOUD_API_KEY: str | None = None
LLAMA_PREMIUM_MODE: bool = False

Purpose:

  • Store LlamaParse API key from environment variables
  • Control premium/basic parsing mode
  • Centralized configuration management

3. core/utils.py - Pipeline Integration

Status: βœ… Complete

Changes:

  1. Import Update (Line 12):

    from .config import get_embedding_model, VECTOR_STORE_DIR, CHUNKS_PATH, NEW_DATA, PROCESSED_DATA, settings
    
  2. Function Update _load_documents_for_file() (Lines 118-141):

    def _load_documents_for_file(file_path: Path) -> List[Document]:
        try:
            if file_path.suffix.lower() == '.pdf':
                # Use advanced LlamaParse loader with settings from config
                api_key = settings.LLAMA_CLOUD_API_KEY
                premium_mode = settings.LLAMA_PREMIUM_MODE
                
                return data_loaders.load_pdf_documents_advanced(
                    file_path,
                    api_key=api_key,
                    premium_mode=premium_mode
                )
            return data_loaders.load_markdown_documents(file_path)
        except Exception as e:
            logger.error(f"Failed to load {file_path}: {e}")
            return []
    

Impact:

  • All PDF processing now uses LlamaParse automatically
  • Reads configuration from environment variables
  • Maintains backward compatibility with markdown files

New Files Created

1. LLAMAPARSE_INTEGRATION.md

Complete documentation including:

  • Setup instructions
  • Configuration guide
  • Usage examples
  • Cost considerations
  • Troubleshooting
  • Migration guide

2. test_llamaparse.py

Test suite with:

  • Configuration checker
  • Single PDF test
  • Batch processing test
  • Full pipeline test

3. INTEGRATION_SUMMARY.md (this file)

Quick reference for all changes


Environment Variables Required

Add to your .env file:

# Required for LlamaParse
LLAMA_CLOUD_API_KEY=llx-your-api-key-here

# Optional: Enable premium mode (default: False)
LLAMA_PREMIUM_MODE=False

# Existing (still required)
OPENAI_API_KEY=your-openai-key

Installation Requirements

pip install llama-parse llama-index-core

How to Use

Automatic Processing (Recommended)

  1. Set LLAMA_CLOUD_API_KEY in .env
  2. Place PDFs in data/new_data/PROVIDER/
  3. Run your application - documents are processed automatically on startup

Manual Processing

from core.utils import process_new_data_and_update_vector_store

# Process all new documents
vector_store = process_new_data_and_update_vector_store()

Direct PDF Loading

from pathlib import Path
from core.data_loaders import load_pdf_documents_advanced

pdf_path = Path("data/new_data/SASLT/guideline.pdf")
documents = load_pdf_documents_advanced(pdf_path)

Testing

Run the test suite:

python test_llamaparse.py

This will:

  1. βœ… Check configuration
  2. βœ… Test single PDF loading
  3. βœ… (Optional) Test batch processing
  4. βœ… (Optional) Test full pipeline

Backward Compatibility

βœ… Fully backward compatible:

  • Existing processed documents remain valid
  • Vector store continues to work
  • Markdown processing unchanged
  • No breaking changes to API

Benefits

Aspect Before (PyMuPDF4LLMLoader) After (LlamaParse)
Borderless Tables ❌ Poor βœ… Excellent
Complex Layouts ⚠️ Moderate βœ… Excellent
Medical Terminology ⚠️ Moderate βœ… Excellent
Page Numbering βœ… Good βœ… Excellent
Processing Speed βœ… Fast (local) ⚠️ Slower (cloud)
Cost βœ… Free ⚠️ ~$0.003-0.01/page
Accuracy ⚠️ Moderate βœ… High

Cost Estimation

Basic Mode (~$0.003/page)

  • 50-page guideline: ~$0.15
  • 100-page guideline: ~$0.30

Premium Mode (~$0.01/page)

  • 50-page guideline: ~$0.50
  • 100-page guideline: ~$1.00

Note: LlamaParse caches results, so re-processing is free.


Workflow Example

1. User places PDF in data/new_data/SASLT/
   └── new_guideline.pdf

2. Application startup triggers processing
   β”œβ”€β”€ Detects new PDF
   β”œβ”€β”€ Calls load_pdf_documents_advanced()
   β”œβ”€β”€ LlamaParse processes with medical optimizations
   β”œβ”€β”€ Extracts 50 pages with accurate metadata
   └── Returns Document objects

3. Pipeline continues
   β”œβ”€β”€ Splits into 245 chunks
   β”œβ”€β”€ Updates vector store
   └── Moves to data/processed_data/SASLT/new_guideline_20251111_143022.pdf

4. Ready for RAG queries
   └── Vector store contains new guideline content

Next Steps

  1. βœ… Set LLAMA_CLOUD_API_KEY in .env
  2. βœ… Install dependencies: pip install llama-parse llama-index-core
  3. βœ… Test with: python test_llamaparse.py
  4. βœ… Place PDFs in data/new_data/PROVIDER/
  5. βœ… Run application and verify processing

Support & Troubleshooting

Common Issues

1. API Key Not Found

ValueError: LlamaCloud API key not found

β†’ Set LLAMA_CLOUD_API_KEY in .env

2. Import Errors

ModuleNotFoundError: No module named 'llama_parse'

β†’ Run: pip install llama-parse llama-index-core

3. Slow Processing β†’ Normal for cloud processing (30-60s per document) β†’ Subsequent runs use cache (much faster)

Logs

Check logs/app.log for detailed processing information


Integration Date: November 11, 2025
Status: βœ… Production Ready
Version: 1.0