HBV_AI_Assistant / LLAMAPARSE_INTEGRATION.md
moazx's picture
Update the Assessment Results
4a17bbc
# LlamaParse Integration Guide
## Overview
The HBV AI Assistant now uses **LlamaParse** for advanced PDF parsing, replacing PyMuPDF4LLMLoader. LlamaParse excels at:
- βœ… Borderless tables (common in medical guidelines)
- βœ… Complex document layouts
- βœ… Hierarchical section preservation
- βœ… Accurate page numbering
- βœ… Medical terminology and dosage tables
## Setup
### 1. Install Required Packages
```bash
pip install llama-parse llama-index-core
```
### 2. Get Your API Key
1. Visit: https://cloud.llamaindex.ai/api-key
2. Sign up/login and generate an API key
3. Copy your API key (format: `llx-...`)
### 3. Configure Environment Variables
Add to your `.env` file:
```env
# Required: LlamaParse API Key
LLAMA_CLOUD_API_KEY=llx-your-api-key-here
# Optional: Enable premium GPT-4o mode (higher accuracy, costs more)
LLAMA_PREMIUM_MODE=False
```
## How It Works
### Automatic Processing Pipeline
When you process new documents from `data/new_data/`, the system automatically:
1. **Detects PDF files** in `data/new_data/PROVIDER/` directories
2. **Uses LlamaParse** with medical document optimizations:
- Preserves table structures (including borderless tables)
- Maintains hierarchical headings
- Extracts dosage information accurately
- Keeps reference citations intact
3. **Splits by page** for accurate page numbering
4. **Extracts metadata**: provider, disease, page numbers
5. **Updates vector store** for RAG queries
### Configuration Options
#### Basic Mode (Default)
```python
# In .env
LLAMA_CLOUD_API_KEY=llx-your-key
LLAMA_PREMIUM_MODE=False
```
- Uses standard LlamaParse parsing
- Good accuracy for most medical documents
- Lower cost
#### Premium Mode
```python
# In .env
LLAMA_CLOUD_API_KEY=llx-your-key
LLAMA_PREMIUM_MODE=True
```
- Uses GPT-4o for parsing
- Highest accuracy for complex tables
- Higher cost per page
- Recommended for critical medical guidelines
## Usage
### Processing New Documents
1. **Place PDFs** in the appropriate directory:
```
data/new_data/SASLT/guideline.pdf
data/new_data/WHO/recommendations.pdf
```
2. **Run the processing** (automatic on app startup or manually):
```python
from core.utils import process_new_data_and_update_vector_store
# Process all new documents
vector_store = process_new_data_and_update_vector_store()
```
3. **Files are automatically moved** to `data/processed_data/` after successful processing
### Manual PDF Loading
You can also load PDFs manually:
```python
from pathlib import Path
from core.data_loaders import load_pdf_documents_advanced
# Basic usage (reads API key from environment)
pdf_path = Path("data/new_data/SASLT/guideline.pdf")
documents = load_pdf_documents_advanced(pdf_path)
# With explicit API key
documents = load_pdf_documents_advanced(
pdf_path,
api_key="llx-your-key-here",
premium_mode=True
)
# Batch processing
from core.data_loaders import load_multiple_pdfs
pdf_dir = Path("data/new_data/SASLT")
all_documents = load_multiple_pdfs(pdf_dir)
```
## Document Metadata
Each processed document includes:
```python
{
"source": "SASLT_2021.pdf",
"disease": "HBV",
"provider": "SASLT",
"page_number": 6,
"document_index": 5,
"parser": "llamaparse",
"premium_mode": False
}
```
## Parsing Instructions
LlamaParse is configured with medical-specific instructions:
### Basic Mode
```
"This is a medical guideline document.
Pay special attention to tables (including borderless tables),
clinical recommendations, dosage information, and reference citations.
Preserve table structure and maintain hierarchical headings."
```
### Premium Mode
```
"Medical guideline document with complex tables. Instructions:
0. Keep the original text intact without changing anything
1. Preserve all table structures, especially borderless tables
2. Maintain hierarchical organization of sections and subsections
3. Keep dosage tables and treatment algorithms intact
4. Preserve reference numbers and citations
5. Identify and mark clinical recommendation levels
6. Extract figures and their captions accurately"
```
## Cost Considerations
- **Basic Mode**: ~$0.003 per page
- **Premium Mode**: ~$0.01 per page (GPT-4o)
- **Caching**: LlamaParse caches results, so re-processing the same file is free
### Cost Estimation
For a 50-page medical guideline:
- Basic: ~$0.15
- Premium: ~$0.50
## Troubleshooting
### API Key Not Found
```
ValueError: LlamaCloud API key not found
```
**Solution**: Set `LLAMA_CLOUD_API_KEY` in your `.env` file
### Import Errors
```
ModuleNotFoundError: No module named 'llama_parse'
```
**Solution**: Install required packages:
```bash
pip install llama-parse llama-index-core
```
### Slow Processing
- LlamaParse processes documents in the cloud
- First-time processing takes longer (30-60 seconds per document)
- Subsequent processing uses cache (much faster)
- Consider using `premium_mode=False` for faster processing
### Empty Results
- Check that PDF is not corrupted
- Verify API key is valid
- Check logs for detailed error messages
## Migration from PyMuPDF4LLMLoader
The integration is **backward compatible**:
- Existing processed documents remain valid
- Vector store continues to work
- Only new documents use LlamaParse
- No changes needed to existing code
### What Changed
1. **`core/data_loaders.py`**: Replaced PyMuPDF4LLMLoader with LlamaParse
2. **`core/config.py`**: Added `LLAMA_CLOUD_API_KEY` and `LLAMA_PREMIUM_MODE` settings
3. **`core/utils.py`**: Updated `_load_documents_for_file()` to use `load_pdf_documents_advanced()`
## Benefits Over PyMuPDF4LLMLoader
| Feature | PyMuPDF4LLMLoader | LlamaParse |
|---------|-------------------|------------|
| Borderless tables | ❌ Poor | βœ… Excellent |
| Complex layouts | ⚠️ Moderate | βœ… Excellent |
| Medical terminology | ⚠️ Moderate | βœ… Excellent |
| Page numbering | βœ… Good | βœ… Excellent |
| Processing speed | βœ… Fast (local) | ⚠️ Slower (cloud) |
| Cost | βœ… Free | ⚠️ Paid API |
| Accuracy | ⚠️ Moderate | βœ… High |
## Example Workflow
```python
# 1. Set up environment
# Add to .env:
# LLAMA_CLOUD_API_KEY=llx-your-key-here
# LLAMA_PREMIUM_MODE=False
# 2. Place new PDFs
# data/new_data/SASLT/new_guideline.pdf
# 3. Process automatically (on app startup)
# Or manually:
from core.utils import process_new_data_and_update_vector_store
vector_store = process_new_data_and_update_vector_store()
# Output:
# βœ… Parsing PDF with LlamaParse (Premium: False): new_guideline.pdf
# βœ… Loaded 50 pages from PDF: new_guideline.pdf
# βœ… Split 50 documents into 245 chunks
# βœ… Added 245 new chunks to existing vector store
# πŸ“¦ Moved processed file: new_guideline.pdf -> SASLT/new_guideline_20251111_143022.pdf
# 4. Query the system
from core.agent import answer_question
response = answer_question(
"What is the recommended treatment for HBeAg-positive chronic hepatitis B?"
)
print(response)
```
## Support
For issues or questions:
1. Check the logs in `logs/app.log`
2. Verify API key is valid
3. Review LlamaParse documentation: https://docs.llamaindex.ai/en/stable/llama_cloud/llama_parse/
4. Check environment variables are set correctly
---
**Last Updated**: November 11, 2025
**Integration Status**: βœ… Complete and Production Ready