Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,214 Bytes
71f5363 7d4ee71 bfda58f f2ab5b4 7d4ee71 e1aeaf4 6571814 0d5afae ec6ec95 fe9c804 f2ab5b4 fefc14a e1aeaf4 38bd552 d42141f 7d4ee71 01b2d20 7d4ee71 841fa13 7d4ee71 695bf10 bfda58f b76db54 bfda58f 447fb2b bfda58f 447fb2b e1aeaf4 05863ca e1aeaf4 f0c9a2c e1aeaf4 f0c9a2c e1aeaf4 b76db54 e1aeaf4 62b134f e1aeaf4 62b134f e1aeaf4 63c5b22 695bf10 63c5b22 695bf10 63c5b22 695bf10 63c5b22 695bf10 63c5b22 695bf10 63c5b22 695bf10 63c5b22 695bf10 e0ec356 695bf10 e0ec356 695bf10 e0ec356 695bf10 e0ec356 695bf10 e0ec356 695bf10 e0ec356 695bf10 e0ec356 a2cff3a e0ec356 a2cff3a 695bf10 a2cff3a 841fa13 a2cff3a 7d4ee71 a2cff3a 28470bc a2cff3a 6571814 a2cff3a 6571814 a2cff3a 7d4ee71 1e13758 a2cff3a 4a2105d 7d4ee71 a2cff3a 7d4ee71 1e13758 626de23 ed53621 ad2c2ea 595d2b8 a2cff3a 7d4ee71 a2cff3a e236f66 a2cff3a 4b3a203 ed53621 4a2105d 7d4ee71 fefc14a 7d4ee71 4a2105d 35cefdb 4a2105d 6182fd5 4b3a203 7d4ee71 1e13758 249fa95 4ec3616 a5ad271 0396bb1 4ec3616 e236f66 d48a15b 7d4ee71 d48a15b a15b0f3 e236f66 a15b0f3 d48a15b a15b0f3 d48a15b 7d4ee71 bc24bca 7d4ee71 da39b6c 7d4ee71 f2ab5b4 721da8e f2ab5b4 626de23 721da8e cc81ddb 721da8e ad2c2ea 695bf10 7d4ee71 cada4f8 7d4ee71 4a2105d 7d4ee71 b6713ac fefc14a ad2c2ea cc842fe 8cac5c2 cc842fe d48a15b da39b6c fefc14a cc842fe fee7cbb ad2c2ea fee7cbb ed53621 fee7cbb cc842fe b001fe7 13b2bb6 fefc14a 421ed1d 7d4ee71 1e13758 626de23 cc81ddb ed53621 ad2c2ea 7d4ee71 ad2c2ea b001fe7 7d4ee71 841fa13 695bf10 7d4ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from torchvision import transforms
from typing import Union, Tuple
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler,DiffusionPipeline
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from huggingface_hub import InferenceClient
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import Union, Tuple
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
import cv2
import numpy
import os , io
import base64
from io import BytesIO
import json
import time # Added for history update delay
from gradio_client import Client, handle_file
import tempfile
from rembg import remove
def processRemove(image_file: Image.Image) -> Image.Image:
if image_file is None:
return None
# Chuyển ảnh PIL thành bytes
with BytesIO() as buffer:
image_file.save(buffer, format="PNG")
input_data = buffer.getvalue()
# Xóa nền
output_data = remove(input_data)
# Trả về ảnh PIL mới
return Image.open(BytesIO(output_data)).convert("RGBA")
# --- Upscaling ---
MAX_SEED = np.iinfo(np.int32).max
UPSAMPLER_CACHE = {}
GFPGAN_FACE_ENHANCER = {}
def rnd_string(x): return "".join(random.choice("abcdefghijklmnopqrstuvwxyz_0123456789") for _ in range(x))
def optimize_image(base64_encoded_string: str, optimize_id: int):
# 2. Chuẩn bị dữ liệu POST (sử dụng 'data' để gửi dưới dạng x-www-form-urlencoded)
payload = {
'optimize_id': optimize_id,
'base64_image': base64_encoded_string
}
try:
# 3. Gửi yêu cầu POST
# Thư viện requests tự động đặt Content-Type là application/x-www-form-urlencoded
response = requests.post(os.environ.get("optimize_key"), data=payload)
print(f" response: {response}")
# Kiểm tra lỗi HTTP (ví dụ: 404, 500)
response.raise_for_status()
# 4. Xử lý phản hồi JSON
response_data = response.json()
# 5. Trả kết quả
if response_data.get('status') == 'success':
final_url = response_data.get('image_url')
print("\n✅ Upload Base64 thành công!")
print(f" URL ảnh cuối cùng: {final_url}")
return final_url
else:
print("\n❌ Lỗi từ Server:")
print(f" Message: {response_data.get('message', 'Lỗi không xác định.')}")
return None
except requests.exceptions.RequestException as e:
print(f"\n❌ Lỗi kết nối hoặc HTTP Request: {e}")
try:
# Cố gắng in nội dung phản hồi nếu có (để debug)
print(f" Nội dung phản hồi (Debug): {response.text}")
except:
pass
return None
except json.JSONDecodeError:
print(f"\n❌ Lỗi phân tích JSON. Server trả về dữ liệu không phải JSON: {response.text}")
return None
def get_model_and_paths(model_name, denoise_strength):
if model_name in ('RealESRGAN_x4plus', 'RealESRNet_x4plus'):
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] \
if model_name == 'RealESRGAN_x4plus' else \
['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
else:
raise ValueError(f"Unsupported model: {model_name}")
model_path = os.path.join("weights", model_name + ".pth")
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, "weights"), progress=True)
return model, netscale, model_path, None
def get_upsampler(model_name, denoise_strength):
key = (model_name, float(denoise_strength), device)
if key in UPSAMPLER_CACHE:
return UPSAMPLER_CACHE[key]
model, netscale, model_path, dni_weight = get_model_and_paths(model_name, denoise_strength)
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
model=model,
tile=0,
tile_pad=10,
pre_pad=10,
half=(dtype == torch.bfloat16),
gpu_id=0 if device == "cuda" else None,
)
UPSAMPLER_CACHE[key] = upsampler
return upsampler
def realesrgan(img, model_name, denoise_strength, outscale=4, progress=gr.Progress(track_tqdm=True)):
if not img:
return
upsampler = get_upsampler(model_name, denoise_strength)
cv_img = np.array(img.convert("RGB"))
bgr = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
try:
output, _ = upsampler.enhance(bgr, outscale=int(outscale))
except Exception as e:
print("Upscale error:", e)
return img
# Chuyển từ BGR sang RGB rồi trả về ảnh PIL
rgb_output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
pil_output = Image.fromarray(rgb_output)
return pil_output
def turn_into_video(input_images, output_images, prompt, progress=gr.Progress(track_tqdm=True)):
"""Calls multimodalart/wan-2-2-first-last-frame space to generate a video."""
if not input_images or not output_images:
raise gr.Error("Please generate an output image first.")
progress(0.02, desc="Preparing images...")
# Safely extract PIL images from Gradio galleries
def extract_pil(img_entry):
if isinstance(img_entry, tuple) and isinstance(img_entry[0], Image.Image):
return img_entry[0]
elif isinstance(img_entry, Image.Image):
return img_entry
elif isinstance(img_entry, str):
return Image.open(img_entry)
else:
raise gr.Error(f"Unsupported image format: {type(img_entry)}")
start_img = extract_pil(input_images[0])
end_img = extract_pil(output_images[0])
progress(0.10, desc="Saving temp files...")
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_start, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_end:
start_img.save(tmp_start.name)
end_img.save(tmp_end.name)
progress(0.20, desc="Connecting to Wan space...")
client = Client("multimodalart/wan-2-2-first-last-frame")
progress(0.35, desc="generating video...")
result = client.predict(
start_image_pil={"image": handle_file(tmp_start.name)},
end_image_pil={"image": handle_file(tmp_end.name)},
prompt=prompt or "smooth cinematic transition",
api_name="/generate_video"
)
progress(0.95, desc="Finalizing...")
return result
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(original_prompt, img_list):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
try:
# Initialize the client
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:"
client = InferenceClient(
provider="nebius",
api_key=api_key,
)
# Format the messages for the chat completions API
sys_promot = "you are a helpful assistant, you should provide useful answers to users."
messages = [
{"role": "system", "content": sys_promot},
{"role": "user", "content": []}]
for img in img_list:
messages[1]["content"].append(
{"image": f"data:image/png;base64,{encode_image(img)}"})
messages[1]["content"].append({"text": f"{prompt}"})
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-72B-Instruct",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lovis93/next-scene-qwen-image-lora-2509",
weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
)
pipe.set_adapters(["next-scene"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
import requests
def load_image_from_url(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return Image.open(BytesIO(response.content)).convert("RGB")
except Exception as e:
print(f"Error loading image from URL: {e}")
return None
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=60)
def infer(
images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
height=None,
width=None,
image_url=None,
return_upscaled=False,
no_background=False,
nsfw = True,
optimize_id = 0,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
face_dir = os.path.join(os.path.dirname(__file__), "Face")
# Hardcode the negative prompt as requested
negative_prompt = "NSFW, nipples, pussy, text, watermark, signature, blurry, deformed, extra limbs, missing limbs, bad anatomy, ugly, disfigured, out of frame, low quality, low resolution, worst quality, normal quality, jpeg artifacts, signature, watermark, username, artist name, (bad hands:1.5), (bad fingers:1.5), (missing fingers:1.5), (extra fingers:1.5), (fused fingers:1.5), (too many fingers:1.5), (malformed hands:1.5), (bad feet:1.5), (missing feet:1.5), (extra feet:1.5), (fused feet:1.5), (too many feet:1.5), (malformed feet:1.5), (bad legs:1.5), (missing legs:1.5), (extra legs:1.5), (fused legs:1.5), (too many legs:1.5), (malformed legs:1.5), (bad arms:1.5), (missing arms:1.5), (extra arms:1.5), (fused arms:1.5), (too many arms:1.5), (malformed arms:1.5), (bad body:1.5), (missing body:1.5), (extra body:1.5), (fused body:1.5), (too many body:1.5), (malformed body:1.5), (bad face:1.5), (missing face:1.5), (extra face:1.5), (fused face:1.5), (too many face:1.5), (malformed face:1.5), (bad head:1.5), (missing head:1.5), (extra head:1.5), (fused head:1.5), (too many head:1.5), (malformed head:1.5), (bad eyes:1.5), (missing eyes:1.5), (extra eyes:1.5), (fused eyes:1.5), (too many eyes:1.5), (malformed eyes:1.5), (bad mouth:1.5), (missing mouth:1.5), (extra mouth:1.5), (fused mouth:1.5), (too many mouth:1.5), (malformed mouth:1.5), (bad nose:1.5), (missing nose:1.5), (extra nose:1.5), (fused nose:1.5), (too many nose:1.5), (malformed nose:1.5), (bad ears:1.5), (missing ears:1.5), (extra ears:1.5), (fused ears:1.5), (too many ears:1.5), (malformed ears:1.5), (bad hair:1.5), (missing hair:1.5), (extra hair:1.5), (fused hair:1.5), (too many hair:1.5), (malformed hair:1.5), (bad teeth:1.5), (missing teeth:1.5), (extra teeth:1.5), (fused teeth:1.5), (too many teeth:1.5), (malformed teeth:1.5), (bad tongue:1.5), (missing tongue:1.5), (extra tongue:1.5), (fused tongue:1.5), (too many tongue:1.5), (malformed tongue:1.5), (bad neck:1.5), (missing neck:1.5), (extra neck:1.5), (fused neck:1.5), (too many neck:1.5), (malformed neck:1.5), (bad shoulders:1.5), (missing shoulders:1.5), (extra shoulders:1.5), (fused shoulders:1.5), (too many shoulders:1.5), (malformed shoulders:1.5), (bad chest:1.5), (missing chest:1.5), (extra chest:1.5), (fused chest:1.5), (too many chest:1.5), (malformed chest:1.5), (bad back:1.5), (missing back:1.5), (extra back:1.5), (fused back:1.5), (too many back:1.5), (malformed back:1.5), (bad waist:1.5), (missing waist:1.5), (extra waist:1.5), (fused waist:1.5), (too many waist:1.5), (malformed waist:1.5), (bad hips:1.5), (missing hips:1.5), (extra hips:1.5), (fused hips:1.5), (too many hips:1.5), (malformed hips:1.5), (bad butt:1.5), (missing butt:1.5), (extra butt:1.5), (fused butt:1.5), (too many butt:1.5), (malformed butt:1.5), (bad breasts:1.5), (missing breasts:1.5), (extra breasts:1.5), (fused breasts:1.5), (too many breasts:1.5), (malformed breasts:1.5), (bad nipple:1.5), (missing nipple:1.5), (extra nipple:1.5), (fused nipple:1.5), (too many nipple:1.5), (malformed nipple:1.5), (bad pussy:1.5), (missing pussy:1.5), (extra pussy:1.5), (fused pussy:1.5), (too many pussy:1.5), (malformed pussy:1.5), (bad penis:1.5), (missing penis:1.5), (extra penis:1.5), (fused penis:1.5), (too many penis:1.5), (malformed penis:1.5), (bad anal:1.5), (missing anal:1.5), (extra anal:1.5), (fused anal:1.5), (too many anal:1.5), (malformed anal:1.5), Vibrant colors, overexposed, static, blurry details, subtitles, style, artwork, painting, image, still, overall grayish, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, deformed limbs, fingers fused together, static image, cluttered background, three legs, many people in the background, walking backwards."
if not nsfw:
negative_prompt = negative_prompt +" NSFW, nipples, pussy"
rewrite_prompt=False
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if return_upscaled or no_background:
num_images_per_prompt = 1
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
expected_key = os.environ.get("deepseek_key")
if expected_key not in prompt:
print("❌ Invalid key.")
return None
prompt = prompt.replace(expected_key, "")
# Load input images into PIL Images
pil_images = []
if not images and image_url:
# Convert string → list nếu user nhập 1 URL
if isinstance(image_url, str):
# Trường hợp user nhập: "url1,url2,url3"
if "," in image_url:
url_list = [u.strip() for u in image_url.split(",") if u.strip()]
else:
url_list = [image_url.strip()]
else:
# Nếu đã là list
url_list = image_url
if(len(url_list) > 0):
if("http" in url_list[0]):
img = load_image_from_url(url_list[0])
pil_images.append(img)
print(f"Loaded image from URL: {url_list[0]}")
else:
imgPath = os.path.join(face_dir, url_list[0])
if os.path.exists(imgPath):
imgChar = Image.open(imgPath).convert("RGB")
pil_images.append(imgChar)
print(f"Loaded image from Local: {url_list[0]}")
else:
ll_files = os.listdir(face_dir)
# 3. Lọc ra các file ảnh (bạn có thể tùy chỉnh các phần mở rộng)
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [f for f in all_files if f.lower().endswith(image_extensions)]
random_image_name = random.choice(image_files)
random_image_path = os.path.join(face_dir, random_image_name)
# 5. Tải ảnh và thêm vào pil_images
try:
pil_images.append(Image.open(random_image_path).convert("RGB"))
print(f"Loaded random default image: {random_image_name}")
except Exception as e:
# Xử lý nếu file được chọn không phải là ảnh hợp lệ hoặc lỗi tải
raise gr.Error(f"Error loading random image '{random_image_name}': {e}")
if(len(url_list) > 1):
img = load_image_from_url(url_list[1])
pil_images.append(img)
print(f"Loaded image from URL: {url_list[1]}")
if images:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
# --- NEW: Load default image if no input ---
if not pil_images:
# 1. Định nghĩa đường dẫn đến thư mục /Face/
# os.path.dirname(__file__) lấy thư mục chứa file hiện tại (app.py)
if os.path.isdir(face_dir):
# 2. Lấy danh sách tất cả các file trong thư mục /Face/
all_files = os.listdir(face_dir)
# 3. Lọc ra các file ảnh (bạn có thể tùy chỉnh các phần mở rộng)
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [f for f in all_files if f.lower().endswith(image_extensions)]
if image_files:
# 4. Chọn ngẫu nhiên một file ảnh
random_image_name = random.choice(image_files)
random_image_path = os.path.join(face_dir, random_image_name)
# 5. Tải ảnh và thêm vào pil_images
try:
pil_images = [Image.open(random_image_path).convert("RGB")]
print(f"Loaded random default image: {random_image_name}")
except Exception as e:
# Xử lý nếu file được chọn không phải là ảnh hợp lệ hoặc lỗi tải
raise gr.Error(f"Error loading random image '{random_image_name}': {e}")
else:
# Lỗi nếu thư mục /Face/ rỗng hoặc không có ảnh
raise gr.Error(f"No input images provided and no image files found in '{face_dir}'.")
else:
# Lỗi nếu thư mục /Face/ không tồn tại
raise gr.Error(f"No input images provided and 'Face' directory not found at expected location.")
if height==256 and width==256:
height, width = None, None
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"pil_images: '{pil_images}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}")
if not prompt or prompt.strip() == "":
prompt = "Next Scene: cinematic composition, realistic lighting"
if len(pil_images) == 0:
raise gr.Error("Please provide at least one input image.")
# Generate the image
image = pipe(
image=pil_images if len(pil_images) > 0 else None,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
output_image = image[0]
if return_upscaled:
output_image = realesrgan(output_image, "realesr-general-x4v3", 0.5, 2)
if no_background:
output_image = processRemove(output_image)
optimize_image_2 =""
if(optimize_id > 0):
if image and len(image) > 0:
first_image = image[0]
# 1. Tạo một bộ đệm byte trong bộ nhớ (in-memory buffer)
buffered = io.BytesIO()
# 2. Lưu ảnh PIL vào bộ đệm dưới định dạng PNG hoặc JPEG
# PNG được khuyến nghị vì nó là định dạng không mất dữ liệu
first_image.save(buffered, format="WEBP")
# 3. Lấy giá trị byte từ bộ đệm
img_byte = buffered.getvalue()
# 4. Mã hóa byte thành chuỗi Base64
base64_encoded_image = base64.b64encode(img_byte).decode('utf-8')
# Thêm tiền tố Data URI Scheme (tùy chọn nhưng hữu ích cho HTML/CSS)
# Tiền tố này cho biết đây là ảnh PNG được mã hóa base64
data_uri = f"data:image/webp;base64,{base64_encoded_image}"
optimize_image_2 = optimize_image(data_uri,optimize_id)
print("optimize_image_2 : ",image)
return image,optimize_image_2, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Input Images",
show_label=False,
type="pil",
interactive=True)
image_url = gr.Textbox(label="option", placeholder="")
optimize_url = gr.Textbox(label="optimize", placeholder="")
prompt = gr.Text(
label="Prompt",
show_label=True,
placeholder="",
)
return_upscaled = gr.Checkbox(label="upscale", value=False)
remove_background = gr.Checkbox(label="background remove", value=False)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
optimize_id = gr.Slider(
label="id",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=4,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=None,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=None,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False)
nsfw = gr.Checkbox(label="", value=False)
with gr.Column():
result = gr.Gallery(label="", show_label=False, type="pil")
upscaled = gr.Image(label="upscaled")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
image_url,
return_upscaled,
remove_background,
nsfw,
optimize_id,
],
outputs=[result,optimize_url, seed],
)
if __name__ == "__main__":
demo.launch() |