Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
| # Load model | |
| MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
| sentiment_model = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
| # Function for Gradio | |
| def analyze_sentiment(text): | |
| result = sentiment_model(text)[0] | |
| return { | |
| "Sentiment": result["label"], | |
| "Confidence": f"{result['score']:.2f}" | |
| } | |
| # Example texts | |
| examples = [ | |
| ["I absolutely love this new phone, the camera is stunning!"], | |
| ["I hate the way this app keeps crashing."], | |
| ["It’s fine, nothing special but not terrible either."], | |
| ] | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=analyze_sentiment, | |
| inputs=gr.Textbox(lines=3, placeholder="Type a sentence here..."), | |
| outputs="label", | |
| examples=examples, | |
| title="Sentiment Analyzer", | |
| description="" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |