Spaces:
Running
Running
Update All_Model.py
Browse files- All_Model.py +19 -36
All_Model.py
CHANGED
|
@@ -1,36 +1,19 @@
|
|
| 1 |
-
from transformers import RobertaTokenizer, RobertaModel
|
| 2 |
-
from transformers import BertModel, BertTokenizer
|
| 3 |
-
from torch import nn
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class
|
| 11 |
-
def __init__(self, pretrained_model='
|
| 12 |
-
super().__init__()
|
| 13 |
-
self.bert =
|
| 14 |
-
self.dropout = nn.Dropout(0.3)
|
| 15 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
| 16 |
-
|
| 17 |
-
def forward(self, input_ids, attention_mask):
|
| 18 |
-
pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output
|
| 19 |
-
return self.classifier(self.dropout(pooled_output))
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#================
|
| 23 |
-
# BERT MODEL
|
| 24 |
-
#================
|
| 25 |
-
BERT_MODEL_PATH = "./Models/BERT_MODEL.pth"
|
| 26 |
-
bert_tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')
|
| 27 |
-
class BertForMultiLabel(nn.Module):
|
| 28 |
-
def __init__(self, pretrained_model='bert-base-uncased', num_labels=5):
|
| 29 |
-
super().__init__()
|
| 30 |
-
self.bert = BertModel.from_pretrained(pretrained_model)
|
| 31 |
-
self.dropout = nn.Dropout(0.3)
|
| 32 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
| 33 |
-
|
| 34 |
-
def forward(self, input_ids, attention_mask):
|
| 35 |
-
pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output
|
| 36 |
-
return self.classifier(self.dropout(pooled_output))
|
|
|
|
| 1 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 2 |
+
from transformers import BertModel, BertTokenizer
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
#================
|
| 6 |
+
# BERT MODEL
|
| 7 |
+
#================
|
| 8 |
+
BERT_MODEL_PATH = "./BERT_MODEL.pth"
|
| 9 |
+
bert_tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')
|
| 10 |
+
class BertForMultiLabel(nn.Module):
|
| 11 |
+
def __init__(self, pretrained_model='bert-base-uncased', num_labels=5):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.bert = BertModel.from_pretrained(pretrained_model)
|
| 14 |
+
self.dropout = nn.Dropout(0.3)
|
| 15 |
+
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
| 16 |
+
|
| 17 |
+
def forward(self, input_ids, attention_mask):
|
| 18 |
+
pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output
|
| 19 |
+
return self.classifier(self.dropout(pooled_output))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|