inference / README.md
nurulajt's picture
Update README.md
b810e9b verified
metadata
title: Embedding Inference API
emoji: 🤖
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false

Embedding Inference API

A FastAPI-based inference service for generating embeddings using JobBERT v2/v3, Jina AI, and Voyage AI.

Features

  • Multiple Models: JobBERT v2/v3 (job-specific), Jina AI v3 (general-purpose), Voyage AI (state-of-the-art)
  • RESTful API: Easy-to-use HTTP endpoints
  • Batch Processing: Process multiple texts in a single request
  • Task-Specific Embeddings: Support for different embedding tasks (retrieval, classification, etc.)
  • Docker Ready: Easy deployment to Hugging Face Spaces or any Docker environment

Supported Models

Model Dimension Max Tokens Best For
JobBERT v2 768 512 Job titles and descriptions
JobBERT v3 768 512 Job titles (improved performance)
Jina AI v3 1024 8,192 General text, long documents
Voyage AI 1024 32,000 High-quality embeddings (requires API key)

Quick Start

Local Development

  1. Install dependencies:

    cd embedding
    pip install -r requirements.txt
    
  2. Run the API:

    python api.py
    
  3. Access the API:

Docker Deployment

  1. Build the image:

    docker build -t embedding-api .
    
  2. Run the container:

    docker run -p 7860:7860 embedding-api
    
  3. With Voyage AI (optional):

    docker run -p 7860:7860 -e VOYAGE_API_KEY=your_key_here embedding-api
    

Hugging Face Spaces Deployment

Option 1: Using Hugging Face CLI

  1. Install Hugging Face CLI:

    pip install huggingface_hub
    huggingface-cli login
    
  2. Create a new Space:

    • Go to https://huggingface.co/spaces
    • Click "Create new Space"
    • Choose "Docker" as the Space SDK
    • Name your space (e.g., your-username/embedding-api)
  3. Clone and push:

    git clone https://huggingface.co/spaces/your-username/embedding-api
    cd embedding-api
    
    # Copy files from embedding folder
    cp /path/to/embedding/Dockerfile .
    cp /path/to/embedding/api.py .
    cp /path/to/embedding/requirements.txt .
    cp /path/to/embedding/README.md .
    
    git add .
    git commit -m "Initial commit"
    git push
    
  4. Configure environment (optional):

    • Go to your Space settings
    • Add VOYAGE_API_KEY secret if using Voyage AI

Option 2: Manual Upload

  1. Create a new Docker Space on Hugging Face
  2. Upload these files:
    • Dockerfile
    • api.py
    • requirements.txt
    • README.md
  3. Add environment variables in Settings if needed

API Usage

Health Check

curl http://localhost:7860/health

Response:

{
  "status": "healthy",
  "models_loaded": ["jobbertv2", "jobbertv3", "jina"],
  "voyage_available": false,
  "api_key_required": false
}

Generate Embeddings (Elasticsearch Compatible)

The main /embed endpoint uses Elasticsearch inference API format with model selection via query parameter.

Single Text (JobBERT v3 - default)

Without API key:

curl -X POST "http://localhost:7860/embed" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Software Engineer"
  }'

With API key:

curl -X POST "http://localhost:7860/embed" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -d '{
    "input": "Software Engineer"
  }'

Response:

{
  "embedding": [0.123, -0.456, 0.789, ...]
}

Single Text with Model Selection

# JobBERT v2
curl -X POST "http://localhost:7860/embed?model=jobbertv2" \
  -H "Content-Type: application/json" \
  -d '{"input": "Data Scientist"}'

# JobBERT v3 (recommended)
curl -X POST "http://localhost:7860/embed?model=jobbertv3" \
  -H "Content-Type: application/json" \
  -d '{"input": "Product Manager"}'

# Jina AI
curl -X POST "http://localhost:7860/embed?model=jina" \
  -H "Content-Type: application/json" \
  -d '{"input": "Machine Learning Engineer"}'

Multiple Texts (Batch)

curl -X POST "http://localhost:7860/embed?model=jobbertv3" \
  -H "Content-Type: application/json" \
  -d '{
    "input": ["Software Engineer", "Data Scientist", "Product Manager"]
  }'

Response:

{
  "embeddings": [
    [0.123, -0.456, ...],
    [0.234, -0.567, ...],
    [0.345, -0.678, ...]
  ]
}

Jina AI with Task Type

curl -X POST "http://localhost:7860/embed?model=jina&task=retrieval.query" \
  -H "Content-Type: application/json" \
  -d '{"input": "What is machine learning?"}'

Jina AI Tasks (query parameter):

  • retrieval.query: For search queries
  • retrieval.passage: For documents
  • text-matching: For similarity (default)

Voyage AI (requires API key)

curl -X POST "http://localhost:7860/embed?model=voyage&input_type=document" \
  -H "Content-Type: application/json" \
  -d '{"input": "This is a document to embed"}'

Voyage AI Input Types (query parameter):

  • document: For documents/passages
  • query: For search queries

Batch Endpoint (Original Format)

For compatibility, the original batch endpoint is still available at /embed/batch:

curl -X POST http://localhost:7860/embed/batch \
  -H "Content-Type: application/json" \
  -d '{
    "texts": ["Software Engineer", "Data Scientist"],
    "model": "jobbertv3"
  }'

Response includes metadata:

{
  "embeddings": [[0.123, ...], [0.234, ...]],
  "model": "jobbertv3",
  "dimension": 768,
  "num_texts": 2
}

List Available Models

curl http://localhost:7860/models

Python Client Examples

Elasticsearch-Compatible Format (Recommended)

import requests

BASE_URL = "http://localhost:7860"
API_KEY = "your-api-key-here"  # Optional, only if API key is required

# Headers (include API key if required)
headers = {}
if API_KEY:
    headers["Authorization"] = f"Bearer {API_KEY}"

# Single embedding (JobBERT v3 - default)
response = requests.post(
    f"{BASE_URL}/embed",
    headers=headers,
    json={"input": "Software Engineer"}
)
result = response.json()
embedding = result["embedding"]  # Single vector
print(f"Embedding dimension: {len(embedding)}")

# Single embedding with model selection
response = requests.post(
    f"{BASE_URL}/embed?model=jina",
    headers=headers,
    json={"input": "Data Scientist"}
)
embedding = response.json()["embedding"]

# Batch embeddings
response = requests.post(
    f"{BASE_URL}/embed?model=jobbertv3",
    headers=headers,
    json={"input": ["Software Engineer", "Data Scientist", "Product Manager"]}
)
result = response.json()
embeddings = result["embeddings"]  # List of vectors
print(f"Generated {len(embeddings)} embeddings")

# Jina AI with task
response = requests.post(
    f"{BASE_URL}/embed?model=jina&task=retrieval.query",
    headers=headers,
    json={"input": "What is Python?"}
)

# Voyage AI with input type
response = requests.post(
    f"{BASE_URL}/embed?model=voyage&input_type=document",
    headers=headers,
    json={"input": "Document text here"}
)

Python Client Class with API Key Support

import requests
from typing import List, Union, Optional

class EmbeddingClient:
    def __init__(self, base_url: str, api_key: Optional[str] = None, model: str = "jobbertv3"):
        self.base_url = base_url
        self.api_key = api_key
        self.model = model
        self.headers = {}
        if api_key:
            self.headers["Authorization"] = f"Bearer {api_key}"
    
    def embed(self, text: Union[str, List[str]]) -> Union[List[float], List[List[float]]]:
        """Get embeddings for single text or batch"""
        response = requests.post(
            f"{self.base_url}/embed?model={self.model}",
            headers=self.headers,
            json={"input": text}
        )
        response.raise_for_status()
        result = response.json()
        
        if isinstance(text, str):
            return result["embedding"]
        else:
            return result["embeddings"]

# Usage
client = EmbeddingClient(
    base_url="https://YOUR-SPACE.hf.space",
    api_key="your-api-key-here",  # Optional
    model="jobbertv3"
)

# Single embedding
embedding = client.embed("Software Engineer")
print(f"Dimension: {len(embedding)}")

# Batch embeddings
embeddings = client.embed(["Software Engineer", "Data Scientist"])
print(f"Generated {len(embeddings)} embeddings")

Batch Format (Original)

import requests

url = "http://localhost:7860/embed/batch"

response = requests.post(url, json={
    "texts": ["Software Engineer", "Data Scientist"],
    "model": "jobbertv3"
})
result = response.json()
embeddings = result["embeddings"]
print(f"Model: {result['model']}, Dimension: {result['dimension']}")

Environment Variables

  • PORT: Server port (default: 7860)
  • API_KEY: Your API key for authentication (optional, but recommended for production)
  • REQUIRE_API_KEY: Set to true to enable API key authentication (default: false)
  • VOYAGE_API_KEY: Voyage AI API key (optional, required for Voyage embeddings)

Setting Up API Key Authentication

Local Development

# Set environment variables
export API_KEY="your-secret-key-here"
export REQUIRE_API_KEY="true"

# Run the API
python api.py

Hugging Face Spaces

  1. Go to your Space settings
  2. Click on "Variables and secrets"
  3. Add secrets:
    • Name: API_KEY, Value: your-secret-key-here
    • Name: REQUIRE_API_KEY, Value: true
  4. Restart your Space

Docker

docker run -p 7860:7860 \
  -e API_KEY="your-secret-key-here" \
  -e REQUIRE_API_KEY="true" \
  embedding-api

Interactive Documentation

Once the API is running, visit:

Notes

  • Models are downloaded automatically on first startup (~2-3GB total)
  • Voyage AI requires an API key from https://www.voyageai.com/
  • First request to each model may be slower due to model loading
  • Use batch processing for better performance (send multiple texts at once)

Troubleshooting

Models not loading

  • Check available disk space (need ~3GB)
  • Ensure internet connection for model download
  • Check logs for specific error messages

Voyage AI not working

  • Verify VOYAGE_API_KEY is set correctly
  • Check API key has sufficient credits
  • Ensure voyageai package is installed

Out of memory

  • Reduce batch size (process fewer texts per request)
  • Use smaller models (JobBERT v2 instead of Jina)
  • Increase container memory limits

License

This API uses models with different licenses:

  • JobBERT v2/v3: Apache 2.0
  • Jina AI: Apache 2.0
  • Voyage AI: Subject to Voyage AI terms of service