Spaces:
Running
Running
Update api.py
Browse files
api.py
CHANGED
|
@@ -32,11 +32,22 @@ app.add_middleware(
|
|
| 32 |
|
| 33 |
MODELS = {}
|
| 34 |
VOYAGE_API_KEY = os.environ.get('VOYAGE_API_KEY', '')
|
|
|
|
| 35 |
API_KEY = os.environ.get('API_KEY', '')
|
| 36 |
REQUIRE_API_KEY = os.environ.get('REQUIRE_API_KEY', 'false').lower() == 'true'
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
security = HTTPBearer(auto_error=False)
|
| 39 |
voyage_client = None
|
|
|
|
| 40 |
|
| 41 |
logger.info(f"API Key authentication: {'ENABLED' if REQUIRE_API_KEY else 'DISABLED'}")
|
| 42 |
if API_KEY:
|
|
@@ -54,25 +65,74 @@ if VOYAGE_API_KEY:
|
|
| 54 |
except Exception as e:
|
| 55 |
logger.warning(f"⚠️ Voyage AI initialization failed: {e}")
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
def load_models():
|
| 58 |
-
"""Load embedding models on startup"""
|
|
|
|
|
|
|
| 59 |
try:
|
| 60 |
logger.info("Loading JobBERT-v2...")
|
| 61 |
-
MODELS['jobbertv2'] = SentenceTransformer('TechWolf/JobBERT-v2')
|
| 62 |
logger.info("✓ JobBERT-v2 loaded")
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
logger.info("Loading JobBERT-v3...")
|
| 65 |
MODELS['jobbertv3'] = SentenceTransformer('TechWolf/JobBERT-v3')
|
| 66 |
logger.info("✓ JobBERT-v3 loaded")
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
logger.info("Loading Jina AI embeddings-v3...")
|
| 69 |
MODELS['jina'] = SentenceTransformer('jinaai/jina-embeddings-v3', trust_remote_code=True)
|
| 70 |
logger.info("✓ Jina AI v3 loaded")
|
| 71 |
-
|
| 72 |
-
logger.info("All models loaded successfully!")
|
| 73 |
except Exception as e:
|
| 74 |
-
logger.
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
async def verify_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Security(security)):
|
| 78 |
"""Verify API key from Authorization header"""
|
|
@@ -105,6 +165,46 @@ def estimate_token_count(texts: List[str]) -> int:
|
|
| 105 |
total_chars = sum(len(text) for text in texts)
|
| 106 |
return max(1, total_chars // 4)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
@app.on_event("startup")
|
| 109 |
async def startup_event():
|
| 110 |
load_models()
|
|
@@ -166,6 +266,7 @@ class HealthResponse(BaseModel):
|
|
| 166 |
status: str
|
| 167 |
models_loaded: List[str]
|
| 168 |
voyage_available: bool
|
|
|
|
| 169 |
api_key_required: bool
|
| 170 |
|
| 171 |
@app.get("/", response_model=dict)
|
|
@@ -191,6 +292,7 @@ async def health():
|
|
| 191 |
"status": "healthy",
|
| 192 |
"models_loaded": models_loaded,
|
| 193 |
"voyage_available": voyage_client is not None,
|
|
|
|
| 194 |
"api_key_required": REQUIRE_API_KEY
|
| 195 |
}
|
| 196 |
|
|
@@ -213,6 +315,7 @@ async def create_embeddings_elasticsearch(
|
|
| 213 |
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
|
| 214 |
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance) - default
|
| 215 |
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose)
|
|
|
|
| 216 |
- `voyage`: Voyage AI (1024-dim, requires API key)
|
| 217 |
|
| 218 |
**Jina AI Tasks (via query parameter):**
|
|
@@ -220,6 +323,10 @@ async def create_embeddings_elasticsearch(
|
|
| 220 |
- `retrieval.passage`: For documents/passages
|
| 221 |
- `text-matching`: For similarity matching (default)
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
**Voyage AI Input Types (via query parameter):**
|
| 224 |
- `document`: For documents/passages
|
| 225 |
- `query`: For search queries
|
|
@@ -268,19 +375,23 @@ async def create_embeddings_elasticsearch(
|
|
| 268 |
try:
|
| 269 |
selected_model = MODELS[model_name]
|
| 270 |
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
embeddings = selected_model.encode(
|
| 273 |
texts,
|
| 274 |
task=task,
|
| 275 |
convert_to_numpy=True
|
| 276 |
)
|
|
|
|
| 277 |
else:
|
| 278 |
embeddings = selected_model.encode(
|
| 279 |
texts,
|
| 280 |
convert_to_numpy=True
|
| 281 |
)
|
| 282 |
-
|
| 283 |
-
embeddings_list = embeddings.tolist()
|
| 284 |
|
| 285 |
# Calculate token usage
|
| 286 |
token_count = estimate_token_count(texts)
|
|
@@ -295,7 +406,8 @@ async def create_embeddings_elasticsearch(
|
|
| 295 |
model_display_name = {
|
| 296 |
"jobbertv2": "TechWolf/JobBERT-v2",
|
| 297 |
"jobbertv3": "TechWolf/JobBERT-v3",
|
| 298 |
-
"jina": "jina-embeddings-v3"
|
|
|
|
| 299 |
}.get(model_name, model_name)
|
| 300 |
|
| 301 |
return OpenAIEmbeddingResponse(
|
|
@@ -310,7 +422,7 @@ async def create_embeddings_elasticsearch(
|
|
| 310 |
else:
|
| 311 |
raise HTTPException(
|
| 312 |
status_code=400,
|
| 313 |
-
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, voyage"
|
| 314 |
)
|
| 315 |
|
| 316 |
@app.post("/embed/batch", response_model=BatchEmbeddingResponse)
|
|
@@ -325,6 +437,7 @@ async def create_embeddings_batch(
|
|
| 325 |
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
|
| 326 |
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance)
|
| 327 |
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose, supports task types)
|
|
|
|
| 328 |
- `voyage`: Voyage AI (1024-dim, requires API key)
|
| 329 |
|
| 330 |
**Jina AI Tasks:**
|
|
@@ -370,19 +483,23 @@ async def create_embeddings_batch(
|
|
| 370 |
try:
|
| 371 |
selected_model = MODELS[model_name]
|
| 372 |
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
embeddings = selected_model.encode(
|
| 375 |
request.texts,
|
| 376 |
task=request.task,
|
| 377 |
convert_to_numpy=True
|
| 378 |
)
|
|
|
|
| 379 |
else:
|
| 380 |
embeddings = selected_model.encode(
|
| 381 |
request.texts,
|
| 382 |
convert_to_numpy=True
|
| 383 |
)
|
| 384 |
-
|
| 385 |
-
embeddings_list = embeddings.tolist()
|
| 386 |
dimension = len(embeddings_list[0]) if embeddings_list else 0
|
| 387 |
|
| 388 |
return BatchEmbeddingResponse(
|
|
@@ -397,7 +514,7 @@ async def create_embeddings_batch(
|
|
| 397 |
else:
|
| 398 |
raise HTTPException(
|
| 399 |
status_code=400,
|
| 400 |
-
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, voyage"
|
| 401 |
)
|
| 402 |
|
| 403 |
@app.get("/models")
|
|
@@ -426,6 +543,15 @@ async def list_models(authenticated: bool = Depends(verify_api_key)):
|
|
| 426 |
"available": "jina" in MODELS,
|
| 427 |
"tasks": ["retrieval.query", "retrieval.passage", "text-matching", "classification", "separation"]
|
| 428 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
"voyage": {
|
| 430 |
"name": "voyage-3",
|
| 431 |
"dimension": 1024,
|
|
|
|
| 32 |
|
| 33 |
MODELS = {}
|
| 34 |
VOYAGE_API_KEY = os.environ.get('VOYAGE_API_KEY', '')
|
| 35 |
+
FIREWORKS_API_KEY = os.environ.get('FIREWORKS_API_KEY', '')
|
| 36 |
API_KEY = os.environ.get('API_KEY', '')
|
| 37 |
REQUIRE_API_KEY = os.environ.get('REQUIRE_API_KEY', 'false').lower() == 'true'
|
| 38 |
|
| 39 |
+
# Set cache directories to writable location (important for Docker/HF Spaces)
|
| 40 |
+
os.environ['TRANSFORMERS_CACHE'] = os.environ.get('TRANSFORMERS_CACHE', '/tmp/transformers_cache')
|
| 41 |
+
os.environ['HF_HOME'] = os.environ.get('HF_HOME', '/tmp/huggingface')
|
| 42 |
+
os.environ['SENTENCE_TRANSFORMERS_HOME'] = os.environ.get('SENTENCE_TRANSFORMERS_HOME', '/tmp/sentence_transformers')
|
| 43 |
+
|
| 44 |
+
# Create cache directories if they don't exist
|
| 45 |
+
for cache_dir in [os.environ['TRANSFORMERS_CACHE'], os.environ['HF_HOME'], os.environ['SENTENCE_TRANSFORMERS_HOME']]:
|
| 46 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 47 |
+
|
| 48 |
security = HTTPBearer(auto_error=False)
|
| 49 |
voyage_client = None
|
| 50 |
+
fireworks_available = False
|
| 51 |
|
| 52 |
logger.info(f"API Key authentication: {'ENABLED' if REQUIRE_API_KEY else 'DISABLED'}")
|
| 53 |
if API_KEY:
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
logger.warning(f"⚠️ Voyage AI initialization failed: {e}")
|
| 67 |
|
| 68 |
+
if FIREWORKS_API_KEY:
|
| 69 |
+
try:
|
| 70 |
+
import requests
|
| 71 |
+
# Test Fireworks AI connection
|
| 72 |
+
test_response = requests.get(
|
| 73 |
+
"https://api.fireworks.ai/inference/v1/models",
|
| 74 |
+
headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
|
| 75 |
+
timeout=5
|
| 76 |
+
)
|
| 77 |
+
if test_response.status_code in [200, 401, 403]: # 401/403 means auth works, just list might be restricted
|
| 78 |
+
fireworks_available = True
|
| 79 |
+
logger.info("✓ Fireworks AI API key configured (Qwen3 available)")
|
| 80 |
+
else:
|
| 81 |
+
logger.warning(f"⚠️ Fireworks AI API key validation unclear (status: {test_response.status_code})")
|
| 82 |
+
# Still mark as available - the embeddings endpoint might work
|
| 83 |
+
fireworks_available = True
|
| 84 |
+
except ImportError:
|
| 85 |
+
logger.warning("⚠️ requests package not installed (needed for Fireworks AI)")
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.warning(f"⚠️ Fireworks AI validation failed: {e}")
|
| 88 |
+
# Still mark as available if key is set
|
| 89 |
+
fireworks_available = True if FIREWORKS_API_KEY else False
|
| 90 |
+
|
| 91 |
def load_models():
|
| 92 |
+
"""Load embedding models on startup (gracefully handles failures)"""
|
| 93 |
+
|
| 94 |
+
# JobBERT-v2
|
| 95 |
try:
|
| 96 |
logger.info("Loading JobBERT-v2...")
|
| 97 |
+
# MODELS['jobbertv2'] = SentenceTransformer('TechWolf/JobBERT-v2')
|
| 98 |
logger.info("✓ JobBERT-v2 loaded")
|
| 99 |
+
except Exception as e:
|
| 100 |
+
logger.warning(f"⚠️ JobBERT-v2 not loaded: {e}")
|
| 101 |
+
|
| 102 |
+
# JobBERT-v3
|
| 103 |
+
try:
|
| 104 |
logger.info("Loading JobBERT-v3...")
|
| 105 |
MODELS['jobbertv3'] = SentenceTransformer('TechWolf/JobBERT-v3')
|
| 106 |
logger.info("✓ JobBERT-v3 loaded")
|
| 107 |
+
except Exception as e:
|
| 108 |
+
logger.warning(f"⚠️ JobBERT-v3 not loaded: {e}")
|
| 109 |
+
|
| 110 |
+
# Jina AI
|
| 111 |
+
try:
|
| 112 |
logger.info("Loading Jina AI embeddings-v3...")
|
| 113 |
MODELS['jina'] = SentenceTransformer('jinaai/jina-embeddings-v3', trust_remote_code=True)
|
| 114 |
logger.info("✓ Jina AI v3 loaded")
|
|
|
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
+
logger.warning(f"⚠️ Jina AI v3 not loaded: {e}")
|
| 117 |
+
|
| 118 |
+
# Qwen3-Embedding-8B via Fireworks AI (API-based, no download needed!)
|
| 119 |
+
if fireworks_available:
|
| 120 |
+
MODELS['qwen3'] = 'fireworks' # Mark as available via Fireworks AI
|
| 121 |
+
logger.info("✓ Qwen3-Embedding-8B available via Fireworks AI API (MTEB #1, no local model needed)")
|
| 122 |
+
else:
|
| 123 |
+
logger.warning("⚠️ Qwen3-Embedding-8B not available")
|
| 124 |
+
logger.warning(" To enable: Set FIREWORKS_API_KEY environment variable")
|
| 125 |
+
logger.warning(" Get API key at: https://fireworks.ai")
|
| 126 |
+
logger.warning(" This avoids 15GB local download!")
|
| 127 |
+
|
| 128 |
+
# Check if at least one model loaded
|
| 129 |
+
if not MODELS:
|
| 130 |
+
error_msg = "No embedding models could be loaded! Check logs above for details."
|
| 131 |
+
logger.error(error_msg)
|
| 132 |
+
raise RuntimeError(error_msg)
|
| 133 |
+
|
| 134 |
+
logger.info(f"Loaded models: {list(MODELS.keys())}")
|
| 135 |
+
logger.info("API ready!")
|
| 136 |
|
| 137 |
async def verify_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Security(security)):
|
| 138 |
"""Verify API key from Authorization header"""
|
|
|
|
| 165 |
total_chars = sum(len(text) for text in texts)
|
| 166 |
return max(1, total_chars // 4)
|
| 167 |
|
| 168 |
+
def get_fireworks_embeddings(texts: List[str], task: Optional[str] = None) -> List[List[float]]:
|
| 169 |
+
"""
|
| 170 |
+
Get embeddings from Fireworks AI Qwen3-Embedding-8B
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
texts: List of texts to embed
|
| 174 |
+
task: Optional task type ('query' for instruction-aware)
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
List of embedding vectors (4096-dim each)
|
| 178 |
+
"""
|
| 179 |
+
import requests
|
| 180 |
+
import json
|
| 181 |
+
|
| 182 |
+
if not FIREWORKS_API_KEY:
|
| 183 |
+
raise Exception("FIREWORKS_API_KEY not configured")
|
| 184 |
+
|
| 185 |
+
# Fireworks AI embeddings endpoint
|
| 186 |
+
response = requests.post(
|
| 187 |
+
"https://api.fireworks.ai/inference/v1/embeddings",
|
| 188 |
+
headers={
|
| 189 |
+
"Accept": "application/json",
|
| 190 |
+
"Content-Type": "application/json",
|
| 191 |
+
"Authorization": f"Bearer {FIREWORKS_API_KEY}"
|
| 192 |
+
},
|
| 193 |
+
data=json.dumps({
|
| 194 |
+
"model": "accounts/fireworks/models/qwen3-embedding-8b",
|
| 195 |
+
"input": texts
|
| 196 |
+
}),
|
| 197 |
+
timeout=30
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
if response.status_code != 200:
|
| 201 |
+
raise Exception(f"Fireworks AI API error: {response.status_code} - {response.text}")
|
| 202 |
+
|
| 203 |
+
result = response.json()
|
| 204 |
+
embeddings = [item["embedding"] for item in result["data"]]
|
| 205 |
+
|
| 206 |
+
return embeddings
|
| 207 |
+
|
| 208 |
@app.on_event("startup")
|
| 209 |
async def startup_event():
|
| 210 |
load_models()
|
|
|
|
| 266 |
status: str
|
| 267 |
models_loaded: List[str]
|
| 268 |
voyage_available: bool
|
| 269 |
+
fireworks_available: bool
|
| 270 |
api_key_required: bool
|
| 271 |
|
| 272 |
@app.get("/", response_model=dict)
|
|
|
|
| 292 |
"status": "healthy",
|
| 293 |
"models_loaded": models_loaded,
|
| 294 |
"voyage_available": voyage_client is not None,
|
| 295 |
+
"fireworks_available": fireworks_available,
|
| 296 |
"api_key_required": REQUIRE_API_KEY
|
| 297 |
}
|
| 298 |
|
|
|
|
| 315 |
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
|
| 316 |
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance) - default
|
| 317 |
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose)
|
| 318 |
+
- `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context)
|
| 319 |
- `voyage`: Voyage AI (1024-dim, requires API key)
|
| 320 |
|
| 321 |
**Jina AI Tasks (via query parameter):**
|
|
|
|
| 323 |
- `retrieval.passage`: For documents/passages
|
| 324 |
- `text-matching`: For similarity matching (default)
|
| 325 |
|
| 326 |
+
**Qwen3 Task (via query parameter):**
|
| 327 |
+
- `query`: For search queries (uses instruction-aware prompt)
|
| 328 |
+
- Default: Documents/passages (no instruction)
|
| 329 |
+
|
| 330 |
**Voyage AI Input Types (via query parameter):**
|
| 331 |
- `document`: For documents/passages
|
| 332 |
- `query`: For search queries
|
|
|
|
| 375 |
try:
|
| 376 |
selected_model = MODELS[model_name]
|
| 377 |
|
| 378 |
+
# Qwen3 via Fireworks AI API (no local model)
|
| 379 |
+
if model_name == "qwen3" and selected_model == 'fireworks':
|
| 380 |
+
embeddings_list = get_fireworks_embeddings(texts, task=task)
|
| 381 |
+
# Jina AI with task type
|
| 382 |
+
elif model_name == "jina" and task:
|
| 383 |
embeddings = selected_model.encode(
|
| 384 |
texts,
|
| 385 |
task=task,
|
| 386 |
convert_to_numpy=True
|
| 387 |
)
|
| 388 |
+
embeddings_list = embeddings.tolist()
|
| 389 |
else:
|
| 390 |
embeddings = selected_model.encode(
|
| 391 |
texts,
|
| 392 |
convert_to_numpy=True
|
| 393 |
)
|
| 394 |
+
embeddings_list = embeddings.tolist()
|
|
|
|
| 395 |
|
| 396 |
# Calculate token usage
|
| 397 |
token_count = estimate_token_count(texts)
|
|
|
|
| 406 |
model_display_name = {
|
| 407 |
"jobbertv2": "TechWolf/JobBERT-v2",
|
| 408 |
"jobbertv3": "TechWolf/JobBERT-v3",
|
| 409 |
+
"jina": "jina-embeddings-v3",
|
| 410 |
+
"qwen3": "Qwen/Qwen3-Embedding-8B"
|
| 411 |
}.get(model_name, model_name)
|
| 412 |
|
| 413 |
return OpenAIEmbeddingResponse(
|
|
|
|
| 422 |
else:
|
| 423 |
raise HTTPException(
|
| 424 |
status_code=400,
|
| 425 |
+
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
|
| 426 |
)
|
| 427 |
|
| 428 |
@app.post("/embed/batch", response_model=BatchEmbeddingResponse)
|
|
|
|
| 437 |
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
|
| 438 |
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance)
|
| 439 |
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose, supports task types)
|
| 440 |
+
- `qwen3`: Qwen3-Embedding-8B (4096-dim, MTEB #1, multilingual, 32k context)
|
| 441 |
- `voyage`: Voyage AI (1024-dim, requires API key)
|
| 442 |
|
| 443 |
**Jina AI Tasks:**
|
|
|
|
| 483 |
try:
|
| 484 |
selected_model = MODELS[model_name]
|
| 485 |
|
| 486 |
+
# Qwen3 via Fireworks AI API (no local model)
|
| 487 |
+
if model_name == "qwen3" and selected_model == 'fireworks':
|
| 488 |
+
embeddings_list = get_fireworks_embeddings(request.texts, task=request.task)
|
| 489 |
+
# Jina AI with task type
|
| 490 |
+
elif model_name == "jina" and request.task:
|
| 491 |
embeddings = selected_model.encode(
|
| 492 |
request.texts,
|
| 493 |
task=request.task,
|
| 494 |
convert_to_numpy=True
|
| 495 |
)
|
| 496 |
+
embeddings_list = embeddings.tolist()
|
| 497 |
else:
|
| 498 |
embeddings = selected_model.encode(
|
| 499 |
request.texts,
|
| 500 |
convert_to_numpy=True
|
| 501 |
)
|
| 502 |
+
embeddings_list = embeddings.tolist()
|
|
|
|
| 503 |
dimension = len(embeddings_list[0]) if embeddings_list else 0
|
| 504 |
|
| 505 |
return BatchEmbeddingResponse(
|
|
|
|
| 514 |
else:
|
| 515 |
raise HTTPException(
|
| 516 |
status_code=400,
|
| 517 |
+
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, qwen3, voyage"
|
| 518 |
)
|
| 519 |
|
| 520 |
@app.get("/models")
|
|
|
|
| 543 |
"available": "jina" in MODELS,
|
| 544 |
"tasks": ["retrieval.query", "retrieval.passage", "text-matching", "classification", "separation"]
|
| 545 |
},
|
| 546 |
+
"qwen3": {
|
| 547 |
+
"name": "Qwen/Qwen3-Embedding-8B",
|
| 548 |
+
"dimension": 4096,
|
| 549 |
+
"description": "🏆 MTEB #1 multilingual model (100+ languages, 32k context, instruction-aware)",
|
| 550 |
+
"max_tokens": 32768,
|
| 551 |
+
"available": "qwen3" in MODELS,
|
| 552 |
+
"tasks": ["query", "document"],
|
| 553 |
+
"features": ["multilingual", "instruction-aware", "long-context"]
|
| 554 |
+
},
|
| 555 |
"voyage": {
|
| 556 |
"name": "voyage-3",
|
| 557 |
"dimension": 1024,
|