Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -259,89 +259,89 @@ class RAGPipeline:
|
|
| 259 |
# return message
|
| 260 |
|
| 261 |
def process_query(self, query: str, placeholder) -> str:
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
|
| 280 |
-
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
|
| 300 |
-
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
-
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
except Exception as e:
|
| 333 |
-
logging.error(f"
|
| 334 |
logging.error(f"Full error details: ", exc_info=True)
|
| 335 |
-
message = f"
|
| 336 |
-
|
| 337 |
return message
|
| 338 |
-
|
| 339 |
-
except Exception as e:
|
| 340 |
-
logging.error(f"Process error: {str(e)}")
|
| 341 |
-
logging.error(f"Full error details: ", exc_info=True)
|
| 342 |
-
message = f"Something went wrong: {str(e)}"
|
| 343 |
-
placeholder.warning(message)
|
| 344 |
-
return message
|
| 345 |
|
| 346 |
@st.cache_resource(show_spinner=False)
|
| 347 |
def initialize_rag_pipeline():
|
|
|
|
| 259 |
# return message
|
| 260 |
|
| 261 |
def process_query(self, query: str, placeholder) -> str:
|
| 262 |
+
try:
|
| 263 |
+
# Preprocess query
|
| 264 |
+
query = self.preprocess_query(query)
|
| 265 |
+
logging.info(f"Processing query: {query}")
|
| 266 |
|
| 267 |
+
# Show retrieval status
|
| 268 |
+
status = placeholder.empty()
|
| 269 |
+
status.write("π Finding relevant information...")
|
| 270 |
|
| 271 |
+
# Get embeddings and search
|
| 272 |
+
query_embedding = self.retriever.encode([query])
|
| 273 |
+
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 274 |
+
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 275 |
|
| 276 |
+
# Log similarity scores
|
| 277 |
+
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 278 |
+
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 279 |
|
| 280 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 281 |
|
| 282 |
+
# Update status
|
| 283 |
+
status.write("π Generating response...")
|
| 284 |
|
| 285 |
+
# Prepare context and prompt
|
| 286 |
+
context = "\n".join(relevant_docs[:3])
|
| 287 |
+
prompt = f"""Context information is below:
|
| 288 |
+
{context}
|
| 289 |
|
| 290 |
+
Given the context above, please answer the following question:
|
| 291 |
+
{query}
|
| 292 |
+
|
| 293 |
+
Guidelines:
|
| 294 |
+
- If you cannot answer based on the context, say so politely
|
| 295 |
+
- Keep the response concise and focused
|
| 296 |
+
- Only include sports-related information
|
| 297 |
+
- No dates or timestamps in the response
|
| 298 |
+
- Use clear, natural language
|
| 299 |
|
| 300 |
+
Answer:"""
|
| 301 |
|
| 302 |
+
# Generate response
|
| 303 |
+
response_placeholder = placeholder.empty()
|
| 304 |
|
| 305 |
+
try:
|
| 306 |
+
# Add logging for model state
|
| 307 |
+
logging.info("Model state check - Is None?: " + str(self.llm is None))
|
| 308 |
|
| 309 |
+
# Directly use Llama model
|
| 310 |
+
response = self.llm(
|
| 311 |
+
prompt,
|
| 312 |
+
max_tokens=512,
|
| 313 |
+
temperature=0.4,
|
| 314 |
+
top_p=0.95,
|
| 315 |
+
echo=False,
|
| 316 |
+
stop=["Question:", "\n\n"]
|
| 317 |
+
)
|
| 318 |
|
| 319 |
+
logging.info(f"Raw model response: {response}")
|
| 320 |
|
| 321 |
+
if response and isinstance(response, dict) and 'choices' in response:
|
| 322 |
+
generated_text = response['choices'][0].get('text', '').strip()
|
| 323 |
+
if generated_text:
|
| 324 |
+
final_response = self.postprocess_response(generated_text)
|
| 325 |
+
response_placeholder.markdown(final_response)
|
| 326 |
+
return final_response
|
| 327 |
|
| 328 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
| 329 |
+
response_placeholder.warning(message)
|
| 330 |
+
return message
|
| 331 |
+
|
| 332 |
+
except Exception as e:
|
| 333 |
+
logging.error(f"Generation error: {str(e)}")
|
| 334 |
+
logging.error(f"Full error details: ", exc_info=True)
|
| 335 |
+
message = f"Had some trouble generating the response: {str(e)}"
|
| 336 |
+
response_placeholder.warning(message)
|
| 337 |
+
return message
|
| 338 |
|
| 339 |
except Exception as e:
|
| 340 |
+
logging.error(f"Process error: {str(e)}")
|
| 341 |
logging.error(f"Full error details: ", exc_info=True)
|
| 342 |
+
message = f"Something went wrong: {str(e)}"
|
| 343 |
+
placeholder.warning(message)
|
| 344 |
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
@st.cache_resource(show_spinner=False)
|
| 347 |
def initialize_rag_pipeline():
|