Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -67,6 +67,33 @@ def load_from_drive(file_id: str):
|
|
| 67 |
st.error(f"Error loading file from Drive: {str(e)}")
|
| 68 |
return None
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
@st.cache_resource(show_spinner=False)
|
| 71 |
def load_llama_model():
|
| 72 |
"""Load Llama model with caching"""
|
|
@@ -78,20 +105,37 @@ def load_llama_model():
|
|
| 78 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 79 |
download_file_with_progress(direct_url, model_path)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
llm_config = {
|
| 82 |
"model_path": model_path,
|
| 83 |
"n_ctx": 2048,
|
| 84 |
"n_threads": 4,
|
| 85 |
"n_batch": 512,
|
| 86 |
"n_gpu_layers": 0,
|
| 87 |
-
"verbose":
|
| 88 |
}
|
| 89 |
|
|
|
|
| 90 |
model = Llama(**llm_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
st.success("Model loaded successfully!")
|
| 92 |
return model
|
|
|
|
| 93 |
except Exception as e:
|
| 94 |
-
|
|
|
|
| 95 |
raise
|
| 96 |
|
| 97 |
def check_environment():
|
|
@@ -152,67 +196,152 @@ class RAGPipeline:
|
|
| 152 |
logging.error(f"Error in query_model: {str(e)}")
|
| 153 |
raise
|
| 154 |
|
| 155 |
-
def process_query(self, query: str, placeholder) -> str:
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
except Exception as e:
|
| 212 |
-
logging.error(f"
|
| 213 |
-
|
| 214 |
-
|
|
|
|
| 215 |
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
@st.cache_resource(show_spinner=False)
|
| 218 |
def initialize_rag_pipeline():
|
|
@@ -244,6 +373,132 @@ def initialize_rag_pipeline():
|
|
| 244 |
st.error(f"Failed to initialize the system: {str(e)}")
|
| 245 |
raise
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
def main():
|
| 248 |
try:
|
| 249 |
# Environment check
|
|
@@ -333,10 +588,17 @@ def main():
|
|
| 333 |
</p>
|
| 334 |
""", unsafe_allow_html=True)
|
| 335 |
|
| 336 |
-
# Initialize the pipeline
|
| 337 |
if 'rag' not in st.session_state:
|
| 338 |
-
|
| 339 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
# Create columns for layout
|
| 342 |
col1, col2, col3 = st.columns([1, 6, 1])
|
|
@@ -349,10 +611,18 @@ def main():
|
|
| 349 |
if query:
|
| 350 |
response_placeholder = st.empty()
|
| 351 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
|
|
|
|
|
|
| 353 |
logging.info(f"Generated response: {response}")
|
| 354 |
except Exception as e:
|
|
|
|
| 355 |
logging.error(f"Query processing error: {str(e)}")
|
|
|
|
| 356 |
response_placeholder.warning("Unable to process your question. Please try again.")
|
| 357 |
else:
|
| 358 |
st.warning("Please enter a question!")
|
|
@@ -368,7 +638,22 @@ def main():
|
|
| 368 |
|
| 369 |
except Exception as e:
|
| 370 |
logging.error(f"Application error: {str(e)}")
|
|
|
|
| 371 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
if __name__ == "__main__":
|
| 374 |
main()
|
|
|
|
| 67 |
st.error(f"Error loading file from Drive: {str(e)}")
|
| 68 |
return None
|
| 69 |
|
| 70 |
+
# @st.cache_resource(show_spinner=False)
|
| 71 |
+
# def load_llama_model():
|
| 72 |
+
# """Load Llama model with caching"""
|
| 73 |
+
# try:
|
| 74 |
+
# model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 75 |
+
|
| 76 |
+
# if not os.path.exists(model_path):
|
| 77 |
+
# st.info("Downloading model... This may take a while.")
|
| 78 |
+
# direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 79 |
+
# download_file_with_progress(direct_url, model_path)
|
| 80 |
+
|
| 81 |
+
# llm_config = {
|
| 82 |
+
# "model_path": model_path,
|
| 83 |
+
# "n_ctx": 2048,
|
| 84 |
+
# "n_threads": 4,
|
| 85 |
+
# "n_batch": 512,
|
| 86 |
+
# "n_gpu_layers": 0,
|
| 87 |
+
# "verbose": False
|
| 88 |
+
# }
|
| 89 |
+
|
| 90 |
+
# model = Llama(**llm_config)
|
| 91 |
+
# st.success("Model loaded successfully!")
|
| 92 |
+
# return model
|
| 93 |
+
# except Exception as e:
|
| 94 |
+
# st.error(f"Error loading model: {str(e)}")
|
| 95 |
+
# raise
|
| 96 |
+
|
| 97 |
@st.cache_resource(show_spinner=False)
|
| 98 |
def load_llama_model():
|
| 99 |
"""Load Llama model with caching"""
|
|
|
|
| 105 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 106 |
download_file_with_progress(direct_url, model_path)
|
| 107 |
|
| 108 |
+
if not os.path.exists(model_path):
|
| 109 |
+
raise FileNotFoundError("Model file not found after download attempt")
|
| 110 |
+
|
| 111 |
+
if os.path.getsize(model_path) < 1000000: # Less than 1MB
|
| 112 |
+
raise ValueError("Model file is too small, likely corrupted")
|
| 113 |
+
|
| 114 |
llm_config = {
|
| 115 |
"model_path": model_path,
|
| 116 |
"n_ctx": 2048,
|
| 117 |
"n_threads": 4,
|
| 118 |
"n_batch": 512,
|
| 119 |
"n_gpu_layers": 0,
|
| 120 |
+
"verbose": True # Enable verbose mode for debugging
|
| 121 |
}
|
| 122 |
|
| 123 |
+
logging.info("Initializing Llama model...")
|
| 124 |
model = Llama(**llm_config)
|
| 125 |
+
|
| 126 |
+
# Test the model
|
| 127 |
+
logging.info("Testing model...")
|
| 128 |
+
test_response = model("Test", max_tokens=10)
|
| 129 |
+
if not test_response:
|
| 130 |
+
raise RuntimeError("Model test failed")
|
| 131 |
+
|
| 132 |
+
logging.info("Model loaded and tested successfully")
|
| 133 |
st.success("Model loaded successfully!")
|
| 134 |
return model
|
| 135 |
+
|
| 136 |
except Exception as e:
|
| 137 |
+
logging.error(f"Error loading model: {str(e)}")
|
| 138 |
+
logging.error("Full error details: ", exc_info=True)
|
| 139 |
raise
|
| 140 |
|
| 141 |
def check_environment():
|
|
|
|
| 196 |
logging.error(f"Error in query_model: {str(e)}")
|
| 197 |
raise
|
| 198 |
|
| 199 |
+
# def process_query(self, query: str, placeholder) -> str:
|
| 200 |
+
# try:
|
| 201 |
+
# # Preprocess query
|
| 202 |
+
# query = self.preprocess_query(query)
|
| 203 |
|
| 204 |
+
# # Show retrieval status
|
| 205 |
+
# status = placeholder.empty()
|
| 206 |
+
# status.write("๐ Finding relevant information...")
|
| 207 |
|
| 208 |
+
# # Get embeddings and search
|
| 209 |
+
# query_embedding = self.retriever.encode([query])
|
| 210 |
+
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 211 |
+
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 212 |
|
| 213 |
+
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 214 |
|
| 215 |
+
# # Update status
|
| 216 |
+
# status.write("๐ญ Generating response...")
|
| 217 |
|
| 218 |
+
# # Prepare context and prompt
|
| 219 |
+
# context = "\n".join(relevant_docs[:3])
|
| 220 |
+
# prompt = f"""Context information is below:
|
| 221 |
+
# {context}
|
| 222 |
|
| 223 |
+
# Given the context above, please answer the following question:
|
| 224 |
+
# {query}
|
| 225 |
+
|
| 226 |
+
# Guidelines:
|
| 227 |
+
# - If you cannot answer based on the context, say so politely
|
| 228 |
+
# - Keep the response concise and focused
|
| 229 |
+
# - Only include sports-related information
|
| 230 |
+
# - No dates or timestamps in the response
|
| 231 |
+
# - Use clear, natural language
|
| 232 |
|
| 233 |
+
# Answer:"""
|
| 234 |
|
| 235 |
+
# # Generate response
|
| 236 |
+
# response_placeholder = placeholder.empty()
|
| 237 |
|
| 238 |
+
# try:
|
| 239 |
+
# response_text = self.query_model(prompt)
|
| 240 |
+
# if response_text:
|
| 241 |
+
# final_response = self.postprocess_response(response_text)
|
| 242 |
+
# response_placeholder.markdown(final_response)
|
| 243 |
+
# return final_response
|
| 244 |
+
# else:
|
| 245 |
+
# message = "No relevant answer found. Please try rephrasing your question."
|
| 246 |
+
# response_placeholder.warning(message)
|
| 247 |
+
# return message
|
| 248 |
|
| 249 |
+
# except Exception as e:
|
| 250 |
+
# logging.error(f"Generation error: {str(e)}")
|
| 251 |
+
# message = "Had some trouble generating the response. Please try again."
|
| 252 |
+
# response_placeholder.warning(message)
|
| 253 |
+
# return message
|
| 254 |
|
| 255 |
+
# except Exception as e:
|
| 256 |
+
# logging.error(f"Process error: {str(e)}")
|
| 257 |
+
# message = "Something went wrong. Please try again with a different question."
|
| 258 |
+
# placeholder.warning(message)
|
| 259 |
+
# return message
|
| 260 |
+
|
| 261 |
+
def process_query(self, query: str, placeholder) -> str:
|
| 262 |
+
try:
|
| 263 |
+
# Preprocess query
|
| 264 |
+
query = self.preprocess_query(query)
|
| 265 |
+
logging.info(f"Processing query: {query}")
|
| 266 |
+
|
| 267 |
+
# Show retrieval status
|
| 268 |
+
status = placeholder.empty()
|
| 269 |
+
status.write("๐ Finding relevant information...")
|
| 270 |
+
|
| 271 |
+
# Get embeddings and search
|
| 272 |
+
query_embedding = self.retriever.encode([query])
|
| 273 |
+
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 274 |
+
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 275 |
+
|
| 276 |
+
# Log similarity scores
|
| 277 |
+
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 278 |
+
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 279 |
+
|
| 280 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 281 |
+
|
| 282 |
+
# Update status
|
| 283 |
+
status.write("๐ญ Generating response...")
|
| 284 |
+
|
| 285 |
+
# Prepare context and prompt
|
| 286 |
+
context = "\n".join(relevant_docs[:3])
|
| 287 |
+
prompt = f"""Context information is below:
|
| 288 |
+
{context}
|
| 289 |
+
|
| 290 |
+
Given the context above, please answer the following question:
|
| 291 |
+
{query}
|
| 292 |
+
|
| 293 |
+
Guidelines:
|
| 294 |
+
- If you cannot answer based on the context, say so politely
|
| 295 |
+
- Keep the response concise and focused
|
| 296 |
+
- Only include sports-related information
|
| 297 |
+
- No dates or timestamps in the response
|
| 298 |
+
- Use clear, natural language
|
| 299 |
+
|
| 300 |
+
Answer:"""
|
| 301 |
+
|
| 302 |
+
# Generate response
|
| 303 |
+
response_placeholder = placeholder.empty()
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
# Add logging for model state
|
| 307 |
+
logging.info("Model state check - Is None?: " + str(self.llm is None))
|
| 308 |
+
|
| 309 |
+
# Directly use Llama model
|
| 310 |
+
response = self.llm(
|
| 311 |
+
prompt,
|
| 312 |
+
max_tokens=512,
|
| 313 |
+
temperature=0.4,
|
| 314 |
+
top_p=0.95,
|
| 315 |
+
echo=False,
|
| 316 |
+
stop=["Question:", "\n\n"]
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
logging.info(f"Raw model response: {response}")
|
| 320 |
+
|
| 321 |
+
if response and isinstance(response, dict) and 'choices' in response:
|
| 322 |
+
generated_text = response['choices'][0].get('text', '').strip()
|
| 323 |
+
if generated_text:
|
| 324 |
+
final_response = self.postprocess_response(generated_text)
|
| 325 |
+
response_placeholder.markdown(final_response)
|
| 326 |
+
return final_response
|
| 327 |
+
|
| 328 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
| 329 |
+
response_placeholder.warning(message)
|
| 330 |
+
return message
|
| 331 |
+
|
| 332 |
except Exception as e:
|
| 333 |
+
logging.error(f"Generation error: {str(e)}")
|
| 334 |
+
logging.error(f"Full error details: ", exc_info=True)
|
| 335 |
+
message = f"Had some trouble generating the response: {str(e)}"
|
| 336 |
+
response_placeholder.warning(message)
|
| 337 |
return message
|
| 338 |
+
|
| 339 |
+
except Exception as e:
|
| 340 |
+
logging.error(f"Process error: {str(e)}")
|
| 341 |
+
logging.error(f"Full error details: ", exc_info=True)
|
| 342 |
+
message = f"Something went wrong: {str(e)}"
|
| 343 |
+
placeholder.warning(message)
|
| 344 |
+
return message
|
| 345 |
|
| 346 |
@st.cache_resource(show_spinner=False)
|
| 347 |
def initialize_rag_pipeline():
|
|
|
|
| 373 |
st.error(f"Failed to initialize the system: {str(e)}")
|
| 374 |
raise
|
| 375 |
|
| 376 |
+
# def main():
|
| 377 |
+
# try:
|
| 378 |
+
# # Environment check
|
| 379 |
+
# if not check_environment():
|
| 380 |
+
# return
|
| 381 |
+
|
| 382 |
+
# # Improved CSS styling
|
| 383 |
+
# st.markdown("""
|
| 384 |
+
# <style>
|
| 385 |
+
# /* Container styling */
|
| 386 |
+
# .block-container {
|
| 387 |
+
# padding-top: 2rem;
|
| 388 |
+
# padding-bottom: 2rem;
|
| 389 |
+
# }
|
| 390 |
+
|
| 391 |
+
# /* Text input styling */
|
| 392 |
+
# .stTextInput > div > div > input {
|
| 393 |
+
# width: 100%;
|
| 394 |
+
# }
|
| 395 |
+
|
| 396 |
+
# /* Button styling */
|
| 397 |
+
# .stButton > button {
|
| 398 |
+
# width: 200px;
|
| 399 |
+
# margin: 0 auto;
|
| 400 |
+
# display: block;
|
| 401 |
+
# background-color: #FF4B4B;
|
| 402 |
+
# color: white;
|
| 403 |
+
# border-radius: 5px;
|
| 404 |
+
# padding: 0.5rem 1rem;
|
| 405 |
+
# }
|
| 406 |
+
|
| 407 |
+
# /* Title styling */
|
| 408 |
+
# .main-title {
|
| 409 |
+
# text-align: center;
|
| 410 |
+
# padding: 1rem 0;
|
| 411 |
+
# font-size: 3rem;
|
| 412 |
+
# color: #1F1F1F;
|
| 413 |
+
# }
|
| 414 |
+
|
| 415 |
+
# .sub-title {
|
| 416 |
+
# text-align: center;
|
| 417 |
+
# padding: 0.5rem 0;
|
| 418 |
+
# font-size: 1.5rem;
|
| 419 |
+
# color: #4F4F4F;
|
| 420 |
+
# }
|
| 421 |
+
|
| 422 |
+
# /* Description styling */
|
| 423 |
+
# .description {
|
| 424 |
+
# text-align: center;
|
| 425 |
+
# color: #666666;
|
| 426 |
+
# padding: 0.5rem 0;
|
| 427 |
+
# font-size: 1.1rem;
|
| 428 |
+
# line-height: 1.6;
|
| 429 |
+
# margin-bottom: 1rem;
|
| 430 |
+
# }
|
| 431 |
+
|
| 432 |
+
# /* Answer container styling */
|
| 433 |
+
# .stMarkdown {
|
| 434 |
+
# max-width: 100%;
|
| 435 |
+
# }
|
| 436 |
+
|
| 437 |
+
# /* Streamlit default overrides */
|
| 438 |
+
# .st-emotion-cache-16idsys p {
|
| 439 |
+
# font-size: 1.1rem;
|
| 440 |
+
# line-height: 1.6;
|
| 441 |
+
# }
|
| 442 |
+
|
| 443 |
+
# /* Container for main content */
|
| 444 |
+
# .main-content {
|
| 445 |
+
# max-width: 1200px;
|
| 446 |
+
# margin: 0 auto;
|
| 447 |
+
# padding: 0 1rem;
|
| 448 |
+
# }
|
| 449 |
+
# </style>
|
| 450 |
+
# """, unsafe_allow_html=True)
|
| 451 |
+
|
| 452 |
+
# # Header section
|
| 453 |
+
# st.markdown("<h1 class='main-title'>๐ The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 454 |
+
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 455 |
+
# st.markdown("""
|
| 456 |
+
# <p class='description'>
|
| 457 |
+
# Hey there! ๐ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
| 458 |
+
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
| 459 |
+
# </p>
|
| 460 |
+
# <p class='description'>
|
| 461 |
+
# Got any general questions? Feel free to askโI'll do my best to provide answers based on the information I've been trained on!
|
| 462 |
+
# </p>
|
| 463 |
+
# """, unsafe_allow_html=True)
|
| 464 |
+
|
| 465 |
+
# # Initialize the pipeline
|
| 466 |
+
# if 'rag' not in st.session_state:
|
| 467 |
+
# with st.spinner("Loading resources..."):
|
| 468 |
+
# st.session_state.rag = initialize_rag_pipeline()
|
| 469 |
+
|
| 470 |
+
# # Create columns for layout
|
| 471 |
+
# col1, col2, col3 = st.columns([1, 6, 1])
|
| 472 |
+
|
| 473 |
+
# with col2:
|
| 474 |
+
# # Query input
|
| 475 |
+
# query = st.text_input("What would you like to know about sports?")
|
| 476 |
+
|
| 477 |
+
# if st.button("Get Answer"):
|
| 478 |
+
# if query:
|
| 479 |
+
# response_placeholder = st.empty()
|
| 480 |
+
# try:
|
| 481 |
+
# response = st.session_state.rag.process_query(query, response_placeholder)
|
| 482 |
+
# logging.info(f"Generated response: {response}")
|
| 483 |
+
# except Exception as e:
|
| 484 |
+
# logging.error(f"Query processing error: {str(e)}")
|
| 485 |
+
# response_placeholder.warning("Unable to process your question. Please try again.")
|
| 486 |
+
# else:
|
| 487 |
+
# st.warning("Please enter a question!")
|
| 488 |
+
|
| 489 |
+
# # Footer
|
| 490 |
+
# st.markdown("<br><br>", unsafe_allow_html=True)
|
| 491 |
+
# st.markdown("---")
|
| 492 |
+
# st.markdown("""
|
| 493 |
+
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
| 494 |
+
# Powered by ESPN Data & Mistral AI ๐
|
| 495 |
+
# </p>
|
| 496 |
+
# """, unsafe_allow_html=True)
|
| 497 |
+
|
| 498 |
+
# except Exception as e:
|
| 499 |
+
# logging.error(f"Application error: {str(e)}")
|
| 500 |
+
# st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 501 |
+
|
| 502 |
def main():
|
| 503 |
try:
|
| 504 |
# Environment check
|
|
|
|
| 588 |
</p>
|
| 589 |
""", unsafe_allow_html=True)
|
| 590 |
|
| 591 |
+
# Initialize the pipeline with better error handling
|
| 592 |
if 'rag' not in st.session_state:
|
| 593 |
+
try:
|
| 594 |
+
with st.spinner("Loading resources..."):
|
| 595 |
+
st.session_state.rag = initialize_rag_pipeline()
|
| 596 |
+
logging.info("Pipeline initialized successfully")
|
| 597 |
+
except Exception as e:
|
| 598 |
+
logging.error(f"Pipeline initialization error: {str(e)}")
|
| 599 |
+
st.error("Failed to initialize the system. Please check the logs.")
|
| 600 |
+
st.stop()
|
| 601 |
+
return
|
| 602 |
|
| 603 |
# Create columns for layout
|
| 604 |
col1, col2, col3 = st.columns([1, 6, 1])
|
|
|
|
| 611 |
if query:
|
| 612 |
response_placeholder = st.empty()
|
| 613 |
try:
|
| 614 |
+
# Log query processing start
|
| 615 |
+
logging.info(f"Processing query: {query}")
|
| 616 |
+
|
| 617 |
+
# Process query and get response
|
| 618 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
| 619 |
+
|
| 620 |
+
# Log successful response
|
| 621 |
logging.info(f"Generated response: {response}")
|
| 622 |
except Exception as e:
|
| 623 |
+
# Log error details
|
| 624 |
logging.error(f"Query processing error: {str(e)}")
|
| 625 |
+
logging.error("Full error details: ", exc_info=True)
|
| 626 |
response_placeholder.warning("Unable to process your question. Please try again.")
|
| 627 |
else:
|
| 628 |
st.warning("Please enter a question!")
|
|
|
|
| 638 |
|
| 639 |
except Exception as e:
|
| 640 |
logging.error(f"Application error: {str(e)}")
|
| 641 |
+
logging.error("Full error details: ", exc_info=True)
|
| 642 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 643 |
|
| 644 |
+
if __name__ == "__main__":
|
| 645 |
+
# Configure logging
|
| 646 |
+
logging.basicConfig(
|
| 647 |
+
level=logging.INFO,
|
| 648 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
try:
|
| 652 |
+
main()
|
| 653 |
+
except Exception as e:
|
| 654 |
+
logging.error(f"Fatal error: {str(e)}")
|
| 655 |
+
logging.error("Full error details: ", exc_info=True)
|
| 656 |
+
st.error("A fatal error occurred. Please check the logs and try again.")
|
| 657 |
+
|
| 658 |
if __name__ == "__main__":
|
| 659 |
main()
|