Spaces:
Sleeping
Sleeping
Update model_handler.py
Browse files- model_handler.py +12 -13
model_handler.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
# Menggunakan ChronosPipeline untuk pemuatan dan inferensi yang efisien
|
| 4 |
-
from chronos import ChronosPipeline
|
| 5 |
|
| 6 |
class ModelHandler:
|
| 7 |
def __init__(self):
|
|
@@ -13,11 +13,11 @@ class ModelHandler:
|
|
| 13 |
self.load_model()
|
| 14 |
|
| 15 |
def load_model(self):
|
| 16 |
-
"""Load Chronos-2 model
|
| 17 |
try:
|
| 18 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 19 |
|
| 20 |
-
# ChronosPipeline menangani semua proses tokenisasi dan pemuatan arsitektur
|
| 21 |
self.pipeline = ChronosPipeline.from_pretrained(
|
| 22 |
self.model_name,
|
| 23 |
device_map=self.device,
|
|
@@ -25,20 +25,20 @@ class ModelHandler:
|
|
| 25 |
print("Chronos-2 pipeline loaded successfully.")
|
| 26 |
|
| 27 |
except Exception as e:
|
|
|
|
| 28 |
print(f"Error loading Chronos-2 model: {e}")
|
| 29 |
print("Using fallback prediction method")
|
| 30 |
self.pipeline = None
|
| 31 |
|
| 32 |
def predict(self, data, horizon=10):
|
| 33 |
-
"""Generate predictions using Chronos-2 or fallback"""
|
| 34 |
try:
|
| 35 |
-
#
|
| 36 |
-
if data is None or len(data['original']) < 20:
|
| 37 |
return np.array([0] * horizon)
|
| 38 |
|
| 39 |
if self.pipeline is None:
|
| 40 |
-
# --- Fallback Logic ---
|
| 41 |
-
# Logic ekstrapolasi tren lama tetap dipertahankan jika model Deep Learning gagal dimuat
|
| 42 |
values = data['original']
|
| 43 |
recent_trend = np.polyfit(range(len(values[-20:])), values[-20:], 1)[0]
|
| 44 |
|
|
@@ -46,27 +46,26 @@ class ModelHandler:
|
|
| 46 |
last_value = values[-1]
|
| 47 |
|
| 48 |
for i in range(horizon):
|
|
|
|
| 49 |
next_value = last_value + recent_trend * (i + 1)
|
| 50 |
-
|
|
|
|
| 51 |
predictions.append(next_value + noise)
|
| 52 |
|
| 53 |
return np.array(predictions)
|
| 54 |
|
| 55 |
# --- Chronos-2 Inference ---
|
| 56 |
-
# Input: numpy array dari harga Close historis yang riil
|
| 57 |
predictions_samples = self.pipeline.predict(
|
| 58 |
data['original'],
|
| 59 |
prediction_length=horizon,
|
| 60 |
-
# Mengambil 20 sampel prediksi untuk mendapatkan prediksi probablistik
|
| 61 |
num_samples=20
|
| 62 |
)
|
| 63 |
|
| 64 |
-
#
|
| 65 |
mean_predictions = np.mean(predictions_samples, axis=0)
|
| 66 |
|
| 67 |
return mean_predictions
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Prediction error: {e}")
|
| 71 |
-
# Mengembalikan array nol jika ada error saat inferensi Chronos
|
| 72 |
return np.array([0] * horizon)
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
# Menggunakan ChronosPipeline untuk pemuatan dan inferensi yang efisien
|
| 4 |
+
from chronos import ChronosPipeline
|
| 5 |
|
| 6 |
class ModelHandler:
|
| 7 |
def __init__(self):
|
|
|
|
| 13 |
self.load_model()
|
| 14 |
|
| 15 |
def load_model(self):
|
| 16 |
+
"""Load Chronos-2 model using the official ChronosPipeline"""
|
| 17 |
try:
|
| 18 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 19 |
|
| 20 |
+
# ChronosPipeline menangani semua proses tokenisasi dan pemuatan arsitektur dengan benar
|
| 21 |
self.pipeline = ChronosPipeline.from_pretrained(
|
| 22 |
self.model_name,
|
| 23 |
device_map=self.device,
|
|
|
|
| 25 |
print("Chronos-2 pipeline loaded successfully.")
|
| 26 |
|
| 27 |
except Exception as e:
|
| 28 |
+
# Jika gagal, pipeline akan tetap None, dan fallback akan digunakan
|
| 29 |
print(f"Error loading Chronos-2 model: {e}")
|
| 30 |
print("Using fallback prediction method")
|
| 31 |
self.pipeline = None
|
| 32 |
|
| 33 |
def predict(self, data, horizon=10):
|
| 34 |
+
"""Generate predictions using Chronos-2 or fallback. 'data' must be the dict from data_processor.prepare_for_chronos."""
|
| 35 |
try:
|
| 36 |
+
# Cek data: memastikan data yang masuk adalah dictionary yang valid
|
| 37 |
+
if data is None or not isinstance(data, dict) or 'original' not in data or len(data['original']) < 20:
|
| 38 |
return np.array([0] * horizon)
|
| 39 |
|
| 40 |
if self.pipeline is None:
|
| 41 |
+
# --- Fallback Logic (Menggunakan data['original']) ---
|
|
|
|
| 42 |
values = data['original']
|
| 43 |
recent_trend = np.polyfit(range(len(values[-20:])), values[-20:], 1)[0]
|
| 44 |
|
|
|
|
| 46 |
last_value = values[-1]
|
| 47 |
|
| 48 |
for i in range(horizon):
|
| 49 |
+
# Add trend with some noise
|
| 50 |
next_value = last_value + recent_trend * (i + 1)
|
| 51 |
+
# Use .get('std', 1.0) for safety
|
| 52 |
+
noise = np.random.normal(0, data.get('std', 1.0) * 0.1)
|
| 53 |
predictions.append(next_value + noise)
|
| 54 |
|
| 55 |
return np.array(predictions)
|
| 56 |
|
| 57 |
# --- Chronos-2 Inference ---
|
|
|
|
| 58 |
predictions_samples = self.pipeline.predict(
|
| 59 |
data['original'],
|
| 60 |
prediction_length=horizon,
|
|
|
|
| 61 |
num_samples=20
|
| 62 |
)
|
| 63 |
|
| 64 |
+
# Mengambil nilai rata-rata (mean) dari semua sampel untuk plot garis tunggal
|
| 65 |
mean_predictions = np.mean(predictions_samples, axis=0)
|
| 66 |
|
| 67 |
return mean_predictions
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Prediction error: {e}")
|
|
|
|
| 71 |
return np.array([0] * horizon)
|