Spaces:
Runtime error
Runtime error
File size: 14,295 Bytes
f07f747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
os.environ.setdefault("GRADIO_TEMP_DIR", "/data2/lzliu/tmp/gradio")
os.environ.setdefault("TMPDIR", "/data2/lzliu/tmp")
os.makedirs("/data2/lzliu/tmp/gradio", exist_ok=True)
os.makedirs("/data2/lzliu/tmp", exist_ok=True)
# 其余保持不变
import logging
import gradio as gr
import torch
import os
import uuid
from test_stablehairv2 import log_validation
from test_stablehairv2 import UNet3DConditionModel, ControlNetModel, CCProjection
from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
from omegaconf import OmegaConf
import numpy as np
import cv2
from test_stablehairv2 import _maybe_align_image
from HairMapper.hair_mapper_run import bald_head
import base64
with open("imgs/background.jpg", "rb") as f:
b64_img = base64.b64encode(f.read()).decode()
def inference(id_image, hair_image):
os.makedirs("gradio_inputs", exist_ok=True)
os.makedirs("gradio_outputs", exist_ok=True)
id_path = "gradio_inputs/id.png"
hair_path = "gradio_inputs/hair.png"
id_image.save(id_path)
hair_image.save(hair_path)
# ===== 图像对齐 =====
aligned_id = _maybe_align_image(id_path, output_size=1024, prefer_cuda=True)
aligned_hair = _maybe_align_image(hair_path, output_size=1024, prefer_cuda=True)
# 保存对齐结果(方便 Gradio 输出)
aligned_id_path = "gradio_outputs/aligned_id.png"
aligned_hair_path = "gradio_outputs/aligned_hair.png"
cv2.imwrite(aligned_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
cv2.imwrite(aligned_hair_path, cv2.cvtColor(aligned_hair, cv2.COLOR_RGB2BGR))
# ===== 调用 HairMapper 秃头化 =====
bald_id_path = "gradio_outputs/bald_id.png"
cv2.imwrite(bald_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
bald_head(bald_id_path, bald_id_path)
# ===== 原本的 Args =====
class Args:
pretrained_model_name_or_path = "./stable-diffusion-v1-5/stable-diffusion-v1-5"
model_path = "./trained_model"
image_encoder = "openai/clip-vit-large-patch14"
controlnet_model_name_or_path = None
revision = None
output_dir = "gradio_outputs"
seed = 42
num_validation_images = 1
validation_ids = [aligned_id_path] # 用对齐后的图像
validation_hairs = [aligned_hair_path] # 用对齐后的图像
use_fp16 = False
args = Args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 初始化 logger
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
# ===== 模型加载(和 main() 对齐) =====
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer",
revision=args.revision)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder, revision=args.revision).to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision).to(
device, dtype=torch.float32)
infer_config = OmegaConf.load('./configs/inference/inference_v2.yaml')
unet2 = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=torch.float32
).to(device)
conv_in_8 = torch.nn.Conv2d(8, unet2.conv_in.out_channels, kernel_size=unet2.conv_in.kernel_size,
padding=unet2.conv_in.padding)
conv_in_8.requires_grad_(False)
unet2.conv_in.requires_grad_(False)
torch.nn.init.zeros_(conv_in_8.weight)
conv_in_8.weight[:, :4, :, :].copy_(unet2.conv_in.weight)
conv_in_8.bias.copy_(unet2.conv_in.bias)
unet2.conv_in = conv_in_8
controlnet = ControlNetModel.from_unet(unet2).to(device)
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location="cpu")
controlnet.load_state_dict(state_dict2, strict=False)
prefix = "motion_module"
ckpt_num = "4140000"
save_path = os.path.join(args.model_path, f"{prefix}-{ckpt_num}.pth")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
args.pretrained_model_name_or_path,
save_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(device)
cc_projection = CCProjection().to(device)
state_dict3 = torch.load(os.path.join(args.model_path, "pytorch_model_1.bin"), map_location="cpu")
cc_projection.load_state_dict(state_dict3, strict=False)
from ref_encoder.reference_unet import ref_unet
Hair_Encoder = ref_unet.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False,
device_map=None, ignore_mismatched_sizes=True
).to(device)
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model_2.bin"), map_location="cpu")
Hair_Encoder.load_state_dict(state_dict2, strict=False)
# 推理
log_validation(
vae, tokenizer, image_encoder, denoising_unet,
args, device, logger,
cc_projection, controlnet, Hair_Encoder
)
output_video = os.path.join(args.output_dir, "validation", "generated_video_0.mp4")
# 提取视频帧用于可拖动预览
frames_dir = os.path.join(args.output_dir, "frames", uuid.uuid4().hex)
os.makedirs(frames_dir, exist_ok=True)
cap = cv2.VideoCapture(output_video)
frames_list = []
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
fp = os.path.join(frames_dir, f"{idx:03d}.png")
cv2.imwrite(fp, frame)
frames_list.append(fp)
idx += 1
cap.release()
max_frames = len(frames_list) if frames_list else 1
first_frame = frames_list[0] if frames_list else None
return aligned_id_path, aligned_hair_path, bald_id_path, output_video, frames_list, gr.update(minimum=1,
maximum=max_frames,
value=1,
step=1), first_frame
# Gradio 前端
# 原 Interface 版本(保留以便回退)
# demo = gr.Interface(
# fn=inference,
# inputs=[
# gr.Image(type="pil", label="上传身份图(ID Image)"),
# gr.Image(type="pil", label="上传发型图(Hair Reference Image)")
# ],
# outputs=[
# gr.Image(type="filepath", label="对齐后的身份图"),
# gr.Image(type="filepath", label="对齐后的发型图"),
# gr.Image(type="filepath", label="秃头化后的身份图"),
# gr.Video(label="生成的视频")
# ],
# title="StableHairV2 多视角发型迁移",
# description="上传身份图和发型参考图,查看对齐结果并生成多视角视频"
# )
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860)
# Blocks 美化版
css = f"""
html, body {{
height: 100%;
margin: 0;
padding: 0;
}}
.gradio-container {{
width: 100% !important;
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background-image: url("data:image/jpeg;base64,{b64_img}");
background-size: cover;
background-position: center;
background-attachment: fixed; /* 背景固定 */
}}
#title-card {{
background: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 16px 24px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
margin-bottom: 20px;
}}
#title-card h2 {{
text-align: center;
margin: 4px 0 12px 0;
font-size: 28px;
}}
#title-card p {{
text-align: center;
font-size: 16px;
color: #374151;
}}
.out-card {{
border:1px solid #e5e7eb; border-radius:10px; padding:10px;
background: rgba(255,255,255,0.85);
}}
.two-col {{
display:grid !important; grid-template-columns: 360px minmax(680px, 1fr); gap:16px
}}
.left-pane {{min-width: 360px}}
.right-pane {{min-width: 680px}}
/* Tabs 美化 */
.tabs {{
background: rgba(255,255,255,0.88);
border-radius: 12px;
box-shadow: 0 8px 24px rgba(0,0,0,0.08);
padding: 8px;
border: 1px solid #e5e7eb;
}}
.tab-nav {{
display: flex; gap: 8px; margin-bottom: 8px;
background: transparent;
border-bottom: 1px solid #e5e7eb;
padding-bottom: 6px;
}}
.tab-nav button {{
background: rgba(255,255,255,0.7);
border: 1px solid #e5e7eb;
backdrop-filter: blur(6px);
border-radius: 8px;
padding: 6px 12px;
color: #111827;
transition: all .2s ease;
}}
.tab-nav button:hover {{
transform: translateY(-1px);
box-shadow: 0 4px 10px rgba(0,0,0,0.06);
}}
.tab-nav button[aria-selected="true"] {{
background: #4f46e5;
color: #fff;
border-color: #4f46e5;
box-shadow: 0 6px 14px rgba(79,70,229,0.25);
}}
.tabitem {{
background: rgba(255,255,255,0.88);
border-radius: 10px;
padding: 8px;
}}
/* 发型库滚动限制容器:固定260px高度,内部可滚动 */
#hair_gallery_wrap {{
height: 260px !important;
overflow-y: scroll !important;
overflow-x: auto !important;
}}
#hair_gallery_wrap .grid, #hair_gallery_wrap .wrap {{
height: 100% !important;
overflow-y: scroll !important;
}}
/* 确保画廊本体占满容器高度,避免滚动条落到页面底部 */
#hair_gallery {{
height: 100% !important;
}}
"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate"),
css=css
) as demo:
# ==== 顶部 Panel ====
with gr.Group(elem_id="title-card"):
gr.Markdown("""
<h2 id='title'>StableHairV2 多视角发型迁移</h2>
<p>上传身份图与发型参考图,系统将自动完成 <b>对齐 → 秃头化 → 视频生成</b>。</p>
""")
with gr.Row(elem_classes=["two-col"]):
with gr.Column(scale=5, min_width=260, elem_classes=["left-pane"]):
id_input = gr.Image(type="pil", label="身份图", height=200)
hair_input = gr.Image(type="pil", label="发型参考图", height=200)
with gr.Row():
run_btn = gr.Button("开始生成", variant="primary")
clear_btn = gr.Button("清空")
# ========= 发型库(点击即填充到“发型参考图”) =========
def _list_imgs(dir_path: str):
exts = (".png", ".jpg", ".jpeg", ".webp")
# exts = (".jpg")
try:
files = [os.path.join(dir_path, f) for f in sorted(os.listdir(dir_path))
if f.lower().endswith(exts)]
return files
except Exception:
return []
hair_list = _list_imgs("hair_resposity")
with gr.Accordion("发型库(点击选择后自动填充)", open=True):
with gr.Group(elem_id="hair_gallery_wrap"):
gallery = gr.Gallery(
value=hair_list,
columns=4, rows=2, allow_preview=True, label="发型库",
elem_id="hair_gallery"
)
def _pick_hair(evt: gr.SelectData): # type: ignore[name-defined]
i = evt.index if hasattr(evt, 'index') else 0
i = 0 if i is None else int(i)
if 0 <= i < len(hair_list):
return gr.update(value=hair_list[i])
return gr.update()
gallery.select(_pick_hair, inputs=None, outputs=hair_input)
with gr.Column(scale=7, min_width=520, elem_classes=["right-pane"]):
with gr.Tabs():
with gr.TabItem("生成视频"):
with gr.Group(elem_classes=["out-card"]):
video_out = gr.Video(label="生成的视频", height=340)
with gr.Row():
frame_slider = gr.Slider(1, 21, value=1, step=1, label="多视角预览(拖动查看帧)")
frame_preview = gr.Image(type="filepath", label="预览帧", height=260)
frames_state = gr.State([])
with gr.TabItem("归一化对齐结果"):
with gr.Group(elem_classes=["out-card"]):
with gr.Row():
aligned_id_out = gr.Image(type="filepath", label="对齐后的身份图", height=240)
aligned_hair_out = gr.Image(type="filepath", label="对齐后的发型图", height=240)
with gr.TabItem("秃头化结果"):
with gr.Group(elem_classes=["out-card"]):
bald_id_out = gr.Image(type="filepath", label="秃头化后的身份图", height=260)
# 逻辑保持不变
run_btn.click(fn=inference,
inputs=[id_input, hair_input],
outputs=[aligned_id_out, aligned_hair_out, bald_id_out,
video_out, frames_state, frame_slider, frame_preview])
def _on_slide(frames, idx):
if not frames:
return gr.update()
i = int(idx) - 1
i = max(0, min(i, len(frames) - 1))
return gr.update(value=frames[i])
frame_slider.change(_on_slide, inputs=[frames_state, frame_slider], outputs=frame_preview)
def _clear():
return None, None, None, None, None
clear_btn.click(_clear, None,
[id_input, hair_input, aligned_id_out, aligned_hair_out, bald_id_out])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|