Spaces:
Runtime error
Runtime error
Steven Chen
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import re
|
|
| 4 |
import uuid
|
| 5 |
import tempfile
|
| 6 |
import json
|
|
|
|
|
|
|
|
|
|
| 7 |
from argparse import ArgumentParser
|
| 8 |
from threading import Thread
|
| 9 |
from queue import Queue
|
|
@@ -35,10 +38,89 @@ from langchain_community.vectorstores.faiss import FAISS
|
|
| 35 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 36 |
from tqdm import tqdm
|
| 37 |
import joblib
|
| 38 |
-
|
| 39 |
import spaces
|
| 40 |
|
| 41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
class TokenStreamer(BaseStreamer):
|
| 43 |
def __init__(self, skip_prompt: bool = False, timeout=None):
|
| 44 |
self.skip_prompt = skip_prompt
|
|
@@ -73,19 +155,54 @@ class TokenStreamer(BaseStreamer):
|
|
| 73 |
else:
|
| 74 |
return value
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
def load_single_file(file_path):
|
| 91 |
_, ext = os.path.splitext(file_path)
|
|
@@ -112,13 +229,13 @@ def load_files(file_paths: list):
|
|
| 112 |
docs.extend(loaded_docs)
|
| 113 |
return docs
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
def create_embedding_model(model_file):
|
| 124 |
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
|
|
@@ -127,70 +244,14 @@ def create_embedding_model(model_file):
|
|
| 127 |
def save_file_paths(store_path, file_paths):
|
| 128 |
joblib.dump(file_paths, f'{store_path}/file_paths.pkl')
|
| 129 |
|
| 130 |
-
def load_file_paths(store_path):
|
| 131 |
-
file_paths_file = f'{store_path}/file_paths.pkl'
|
| 132 |
-
if os.path.exists(file_paths_file):
|
| 133 |
-
return joblib.load(file_paths_file)
|
| 134 |
-
return None
|
| 135 |
-
|
| 136 |
-
def file_paths_match(store_path, file_paths):
|
| 137 |
-
saved_file_paths = load_file_paths(store_path)
|
| 138 |
-
return saved_file_paths == file_paths
|
| 139 |
-
|
| 140 |
-
# def create_vector_store(docs, store_file, embeddings):
|
| 141 |
-
# vector_store = FAISS.from_documents(docs, embeddings)
|
| 142 |
-
# vector_store.save_local(store_file)
|
| 143 |
-
# return vector_store
|
| 144 |
-
|
| 145 |
-
def load_vector_store(store_path, embeddings):
|
| 146 |
-
if os.path.exists(store_path):
|
| 147 |
-
vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
|
| 148 |
-
return vector_store
|
| 149 |
-
else:
|
| 150 |
-
return None
|
| 151 |
-
|
| 152 |
-
def split_text(txt, chunk_size=200, overlap=20):
|
| 153 |
-
if not txt:
|
| 154 |
-
return [] # 返回空列表而不是 None
|
| 155 |
-
|
| 156 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
| 157 |
-
docs = splitter.split_documents(txt)
|
| 158 |
-
return docs
|
| 159 |
-
|
| 160 |
def create_vector_store(docs, store_file, embeddings):
|
| 161 |
-
if not docs:
|
| 162 |
raise ValueError("No documents provided for creating vector store")
|
| 163 |
|
| 164 |
vector_store = FAISS.from_documents(docs, embeddings)
|
| 165 |
vector_store.save_local(store_file)
|
| 166 |
return vector_store
|
| 167 |
|
| 168 |
-
def load_or_create_store(store_path, file_paths, embeddings):
|
| 169 |
-
try:
|
| 170 |
-
if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
|
| 171 |
-
print("Vector database is consistent with last use, no need to rewrite")
|
| 172 |
-
vector_store = load_vector_store(store_path, embeddings)
|
| 173 |
-
if vector_store:
|
| 174 |
-
return vector_store
|
| 175 |
-
|
| 176 |
-
print("Rewriting database")
|
| 177 |
-
pages = load_files(file_paths)
|
| 178 |
-
if not pages: # 添加验证
|
| 179 |
-
raise ValueError("No documents loaded from provided file paths")
|
| 180 |
-
|
| 181 |
-
docs = split_text(pages)
|
| 182 |
-
if not docs: # 添加验证
|
| 183 |
-
raise ValueError("No documents created after splitting text")
|
| 184 |
-
|
| 185 |
-
vector_store = create_vector_store(docs, store_path, embeddings)
|
| 186 |
-
save_file_paths(store_path, file_paths)
|
| 187 |
-
return vector_store
|
| 188 |
-
|
| 189 |
-
except Exception as e:
|
| 190 |
-
print(f"Error creating vector store: {str(e)}")
|
| 191 |
-
# 可以根据需要决定是否继续抛出异常
|
| 192 |
-
raise
|
| 193 |
-
|
| 194 |
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
|
| 195 |
retriever = vector_store.as_retriever(
|
| 196 |
search_type="similarity_score_threshold",
|
|
@@ -200,89 +261,169 @@ def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8)
|
|
| 200 |
context = [doc.page_content for doc in similar_docs]
|
| 201 |
return context
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
inputs = self.glm_tokenizer([prompt], return_tensors="pt")
|
| 224 |
-
inputs = inputs.to(self.device)
|
| 225 |
-
streamer = TokenStreamer(skip_prompt=True)
|
| 226 |
-
|
| 227 |
-
thread = Thread(
|
| 228 |
-
target=self.glm_model.generate,
|
| 229 |
-
kwargs=dict(
|
| 230 |
-
**inputs,
|
| 231 |
-
max_new_tokens=int(max_new_tokens),
|
| 232 |
-
temperature=float(temperature),
|
| 233 |
-
top_p=float(top_p),
|
| 234 |
-
streamer=streamer
|
| 235 |
-
)
|
| 236 |
-
)
|
| 237 |
-
thread.start()
|
| 238 |
-
|
| 239 |
-
for token_id in streamer:
|
| 240 |
-
yield token_id
|
| 241 |
-
|
| 242 |
-
@spaces.GPU
|
| 243 |
-
def generate_stream_gate(self, params):
|
| 244 |
-
try:
|
| 245 |
-
for x in self.generate_stream(params):
|
| 246 |
-
yield x
|
| 247 |
-
except Exception as e:
|
| 248 |
-
print("Caught Unknown Error", e)
|
| 249 |
-
ret = "Server Error"
|
| 250 |
-
yield ret
|
| 251 |
-
|
| 252 |
-
def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths):
|
| 253 |
embedding_model = create_embedding_model(Embedding_Model)
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
|
| 257 |
-
def
|
| 258 |
-
|
| 259 |
-
return None
|
| 260 |
-
file_paths = [file.name for file in files]
|
| 261 |
-
return file_paths
|
| 262 |
|
| 263 |
-
def reinitialize_database(files, progress=gr.Progress()):
|
| 264 |
-
global vector_store, embedding_model
|
| 265 |
-
|
| 266 |
if not files:
|
| 267 |
return "No files uploaded. Please upload files first."
|
| 268 |
-
|
| 269 |
-
file_paths = [file.name for file in files]
|
| 270 |
|
| 271 |
-
progress(0, desc="
|
| 272 |
-
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
if __name__ == "__main__":
|
| 288 |
parser = ArgumentParser()
|
|
@@ -291,7 +432,6 @@ if __name__ == "__main__":
|
|
| 291 |
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
|
| 292 |
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
| 293 |
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
|
| 294 |
-
# parser.add_argument("--whisper_model", type=str, default="base")
|
| 295 |
parser.add_argument("--share", action='store_true')
|
| 296 |
args = parser.parse_args()
|
| 297 |
|
|
@@ -307,169 +447,19 @@ if __name__ == "__main__":
|
|
| 307 |
feature_extractor = None
|
| 308 |
glm_model = None
|
| 309 |
glm_tokenizer = None
|
| 310 |
-
|
| 311 |
-
|
| 312 |
whisper_transcribe_model = None
|
| 313 |
model_worker = None
|
| 314 |
|
| 315 |
-
#
|
| 316 |
Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
|
| 317 |
-
file_paths = []
|
| 318 |
-
store_path = './data.faiss'
|
| 319 |
|
| 320 |
-
|
| 321 |
-
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
|
| 322 |
-
global vector_store, embedding_model, whisper_transcribe_model, model_worker
|
| 323 |
-
|
| 324 |
-
if audio_decoder is not None:
|
| 325 |
-
return
|
| 326 |
-
|
| 327 |
-
model_worker = ModelWorker(args.model_path, device)
|
| 328 |
-
glm_tokenizer = model_worker.glm_tokenizer
|
| 329 |
-
|
| 330 |
-
audio_decoder = AudioDecoder(
|
| 331 |
-
config_path=flow_config,
|
| 332 |
-
flow_ckpt_path=flow_checkpoint,
|
| 333 |
-
hift_ckpt_path=hift_checkpoint,
|
| 334 |
-
device=device
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
|
| 338 |
-
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
|
| 339 |
-
|
| 340 |
-
embedding_model = create_embedding_model(Embedding_Model)
|
| 341 |
-
vector_store = load_or_create_store(store_path, file_paths, embedding_model)
|
| 342 |
-
|
| 343 |
-
whisper_transcribe_model = whisper.load_model("base")
|
| 344 |
-
|
| 345 |
-
def clear_fn():
|
| 346 |
-
return [], [], '', '', '', None, None
|
| 347 |
-
|
| 348 |
-
def inference_fn(
|
| 349 |
-
temperature: float,
|
| 350 |
-
top_p: float,
|
| 351 |
-
max_new_token: int,
|
| 352 |
-
input_mode,
|
| 353 |
-
audio_path: str | None,
|
| 354 |
-
input_text: str | None,
|
| 355 |
-
history: list[dict],
|
| 356 |
-
previous_input_tokens: str,
|
| 357 |
-
previous_completion_tokens: str,
|
| 358 |
-
):
|
| 359 |
-
global whisper_transcribe_model, vector_store
|
| 360 |
-
using_context = False
|
| 361 |
-
|
| 362 |
-
if input_mode == "audio":
|
| 363 |
-
assert audio_path is not None
|
| 364 |
-
history.append({"role": "user", "content": {"path": audio_path}})
|
| 365 |
-
audio_tokens = extract_speech_token(
|
| 366 |
-
whisper_model, feature_extractor, [audio_path]
|
| 367 |
-
)[0]
|
| 368 |
-
if len(audio_tokens) == 0:
|
| 369 |
-
raise gr.Error("No audio tokens extracted")
|
| 370 |
-
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
|
| 371 |
-
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
|
| 372 |
-
user_input = audio_tokens
|
| 373 |
-
system_prompt = "User will provide you with a speech instruction. Do it step by step."
|
| 374 |
-
|
| 375 |
-
whisper_result = whisper_transcribe_model.transcribe(audio_path)
|
| 376 |
-
transcribed_text = whisper_result['text']
|
| 377 |
-
context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
|
| 378 |
-
else:
|
| 379 |
-
assert input_text is not None
|
| 380 |
-
history.append({"role": "user", "content": input_text})
|
| 381 |
-
user_input = input_text
|
| 382 |
-
system_prompt = "User will provide you with a text instruction. Do it step by step."
|
| 383 |
-
context = query_vector_store(vector_store, input_text, 4, 0.7)
|
| 384 |
-
|
| 385 |
-
if context is not None:
|
| 386 |
-
using_context = True
|
| 387 |
-
|
| 388 |
-
inputs = previous_input_tokens + previous_completion_tokens
|
| 389 |
-
inputs = inputs.strip()
|
| 390 |
-
if "<|system|>" not in inputs:
|
| 391 |
-
inputs += f"<|system|>\n{system_prompt}"
|
| 392 |
-
if ("<|context|>" not in inputs) and (using_context == True):
|
| 393 |
-
inputs += f"<|context|> According to the following content: {context}, Please answer the question"
|
| 394 |
-
if "<|context|>" not in inputs and context is not None:
|
| 395 |
-
inputs += f"<|context|>\n{context}"
|
| 396 |
-
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
|
| 397 |
-
|
| 398 |
-
with torch.no_grad():
|
| 399 |
-
text_tokens, audio_tokens = [], []
|
| 400 |
-
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
|
| 401 |
-
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
|
| 402 |
-
complete_tokens = []
|
| 403 |
-
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
|
| 404 |
-
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
|
| 405 |
-
this_uuid = str(uuid.uuid4())
|
| 406 |
-
tts_speechs = []
|
| 407 |
-
tts_mels = []
|
| 408 |
-
prev_mel = None
|
| 409 |
-
is_finalize = False
|
| 410 |
-
block_size = 10
|
| 411 |
-
|
| 412 |
-
# Generate tokens using ModelWorker directly instead of API
|
| 413 |
-
for token_id in model_worker.generate_stream_gate({
|
| 414 |
-
"prompt": inputs,
|
| 415 |
-
"temperature": temperature,
|
| 416 |
-
"top_p": top_p,
|
| 417 |
-
"max_new_tokens": max_new_token,
|
| 418 |
-
}):
|
| 419 |
-
if isinstance(token_id, str): # Error case
|
| 420 |
-
yield history, inputs, '', token_id, None, None
|
| 421 |
-
return
|
| 422 |
-
|
| 423 |
-
if token_id == end_token_id:
|
| 424 |
-
is_finalize = True
|
| 425 |
-
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
|
| 426 |
-
block_size = 20
|
| 427 |
-
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
|
| 428 |
-
|
| 429 |
-
if prev_mel is not None:
|
| 430 |
-
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
|
| 431 |
-
|
| 432 |
-
tts_speech, tts_mel = audio_decoder.token2wav(
|
| 433 |
-
tts_token,
|
| 434 |
-
uuid=this_uuid,
|
| 435 |
-
prompt_token=flow_prompt_speech_token.to(device),
|
| 436 |
-
prompt_feat=prompt_speech_feat.to(device),
|
| 437 |
-
finalize=is_finalize
|
| 438 |
-
)
|
| 439 |
-
prev_mel = tts_mel
|
| 440 |
-
|
| 441 |
-
tts_speechs.append(tts_speech.squeeze())
|
| 442 |
-
tts_mels.append(tts_mel)
|
| 443 |
-
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
|
| 444 |
-
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
|
| 445 |
-
audio_tokens = []
|
| 446 |
-
|
| 447 |
-
if not is_finalize:
|
| 448 |
-
complete_tokens.append(token_id)
|
| 449 |
-
if token_id >= audio_offset:
|
| 450 |
-
audio_tokens.append(token_id - audio_offset)
|
| 451 |
-
else:
|
| 452 |
-
text_tokens.append(token_id)
|
| 453 |
-
|
| 454 |
-
# Generate final audio and save
|
| 455 |
-
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
|
| 456 |
-
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
|
| 457 |
-
|
| 458 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 459 |
-
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
|
| 460 |
-
|
| 461 |
-
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
|
| 462 |
-
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
|
| 463 |
-
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
|
| 464 |
-
|
| 465 |
-
def update_input_interface(input_mode):
|
| 466 |
-
if input_mode == "audio":
|
| 467 |
-
return [gr.update(visible=True), gr.update(visible=False)]
|
| 468 |
-
else:
|
| 469 |
-
return [gr.update(visible=False), gr.update(visible=True)]
|
| 470 |
-
|
| 471 |
-
# Create Gradio interface with new layout
|
| 472 |
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
|
|
|
|
|
|
|
|
|
| 473 |
with gr.Row():
|
| 474 |
# Left column for chat interface
|
| 475 |
with gr.Column(scale=2):
|
|
@@ -534,7 +524,7 @@ if __name__ == "__main__":
|
|
| 534 |
file_count="multiple"
|
| 535 |
)
|
| 536 |
|
| 537 |
-
reinit_btn = gr.Button("
|
| 538 |
status_text = gr.Textbox(label="Status", interactive=False)
|
| 539 |
|
| 540 |
history_state = gr.State([])
|
|
@@ -550,6 +540,7 @@ if __name__ == "__main__":
|
|
| 550 |
audio,
|
| 551 |
text_input,
|
| 552 |
history_state,
|
|
|
|
| 553 |
],
|
| 554 |
outputs=[
|
| 555 |
history_state,
|
|
@@ -576,12 +567,16 @@ if __name__ == "__main__":
|
|
| 576 |
outputs=[audio, text_input]
|
| 577 |
)
|
| 578 |
|
| 579 |
-
# Database
|
| 580 |
reinit_btn.click(
|
| 581 |
reinitialize_database,
|
| 582 |
-
inputs=[file_upload],
|
| 583 |
outputs=[status_text]
|
| 584 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
# Initialize models and launch interface
|
| 587 |
initialize_fn()
|
|
|
|
| 4 |
import uuid
|
| 5 |
import tempfile
|
| 6 |
import json
|
| 7 |
+
import time
|
| 8 |
+
import shutil
|
| 9 |
+
from pathlib import Path
|
| 10 |
from argparse import ArgumentParser
|
| 11 |
from threading import Thread
|
| 12 |
from queue import Queue
|
|
|
|
| 38 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 39 |
from tqdm import tqdm
|
| 40 |
import joblib
|
|
|
|
| 41 |
import spaces
|
| 42 |
|
| 43 |
+
# File loader mapping
|
| 44 |
+
LOADER_MAPPING = {
|
| 45 |
+
'.pdf': PyPDFLoader,
|
| 46 |
+
'.txt': TextLoader,
|
| 47 |
+
'.md': UnstructuredMarkdownLoader,
|
| 48 |
+
'.csv': CSVLoader,
|
| 49 |
+
'.jpg': UnstructuredImageLoader,
|
| 50 |
+
'.jpeg': UnstructuredImageLoader,
|
| 51 |
+
'.png': UnstructuredImageLoader,
|
| 52 |
+
'.json': JSONLoader,
|
| 53 |
+
'.html': BSHTMLLoader,
|
| 54 |
+
'.htm': BSHTMLLoader
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
class SessionManager:
|
| 58 |
+
def __init__(self, base_path="./sessions"):
|
| 59 |
+
self.base_path = Path(base_path)
|
| 60 |
+
self.base_path.mkdir(exist_ok=True)
|
| 61 |
+
|
| 62 |
+
def create_session(self):
|
| 63 |
+
session_id = str(uuid.uuid4())
|
| 64 |
+
session_path = self.base_path / session_id
|
| 65 |
+
session_path.mkdir(exist_ok=True)
|
| 66 |
+
return session_id
|
| 67 |
+
|
| 68 |
+
def get_session_path(self, session_id):
|
| 69 |
+
return self.base_path / session_id
|
| 70 |
+
|
| 71 |
+
def cleanup_old_sessions(self, max_age_hours=24):
|
| 72 |
+
current_time = time.time()
|
| 73 |
+
for session_dir in self.base_path.iterdir():
|
| 74 |
+
if session_dir.is_dir():
|
| 75 |
+
dir_stats = os.stat(session_dir)
|
| 76 |
+
age_hours = (current_time - dir_stats.st_mtime) / 3600
|
| 77 |
+
if age_hours > max_age_hours:
|
| 78 |
+
shutil.rmtree(session_dir)
|
| 79 |
+
|
| 80 |
+
class VectorStoreManager:
|
| 81 |
+
def __init__(self, session_manager, embedding_model):
|
| 82 |
+
self.session_manager = session_manager
|
| 83 |
+
self.embedding_model = embedding_model
|
| 84 |
+
self.stores = {}
|
| 85 |
+
|
| 86 |
+
def get_store_path(self, session_id):
|
| 87 |
+
session_path = self.session_manager.get_session_path(session_id)
|
| 88 |
+
return session_path / "vector_store.faiss"
|
| 89 |
+
|
| 90 |
+
def create_store(self, session_id, files):
|
| 91 |
+
if not files:
|
| 92 |
+
return None
|
| 93 |
+
|
| 94 |
+
store_path = self.get_store_path(session_id)
|
| 95 |
+
file_paths = [f.name for f in files]
|
| 96 |
+
|
| 97 |
+
pages = load_files(file_paths)
|
| 98 |
+
if not pages:
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
docs = split_text(pages)
|
| 102 |
+
if not docs:
|
| 103 |
+
return None
|
| 104 |
+
|
| 105 |
+
vector_store = FAISS.from_documents(docs, self.embedding_model)
|
| 106 |
+
vector_store.save_local(str(store_path))
|
| 107 |
+
save_file_paths(str(store_path.parent), file_paths)
|
| 108 |
+
|
| 109 |
+
self.stores[session_id] = vector_store
|
| 110 |
+
return vector_store
|
| 111 |
+
|
| 112 |
+
def get_store(self, session_id):
|
| 113 |
+
if session_id in self.stores:
|
| 114 |
+
return self.stores[session_id]
|
| 115 |
+
|
| 116 |
+
store_path = self.get_store_path(session_id)
|
| 117 |
+
if store_path.exists():
|
| 118 |
+
vector_store = FAISS.load_local(str(store_path), self.embedding_model)
|
| 119 |
+
self.stores[session_id] = vector_store
|
| 120 |
+
return vector_store
|
| 121 |
+
|
| 122 |
+
return None
|
| 123 |
+
|
| 124 |
class TokenStreamer(BaseStreamer):
|
| 125 |
def __init__(self, skip_prompt: bool = False, timeout=None):
|
| 126 |
self.skip_prompt = skip_prompt
|
|
|
|
| 155 |
else:
|
| 156 |
return value
|
| 157 |
|
| 158 |
+
class ModelWorker:
|
| 159 |
+
def __init__(self, model_path, device='cuda'):
|
| 160 |
+
self.device = device
|
| 161 |
+
self.glm_model = AutoModel.from_pretrained(
|
| 162 |
+
model_path,
|
| 163 |
+
trust_remote_code=True,
|
| 164 |
+
device=device
|
| 165 |
+
).to(device).eval()
|
| 166 |
+
self.glm_tokenizer = AutoTokenizer.from_pretrained(
|
| 167 |
+
model_path,
|
| 168 |
+
trust_remote_code=True
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
@torch.inference_mode()
|
| 172 |
+
def generate_stream(self, params):
|
| 173 |
+
prompt = params["prompt"]
|
| 174 |
+
temperature = float(params.get("temperature", 1.0))
|
| 175 |
+
top_p = float(params.get("top_p", 1.0))
|
| 176 |
+
max_new_tokens = int(params.get("max_new_tokens", 256))
|
| 177 |
+
|
| 178 |
+
inputs = self.glm_tokenizer([prompt], return_tensors="pt")
|
| 179 |
+
inputs = inputs.to(self.device)
|
| 180 |
+
streamer = TokenStreamer(skip_prompt=True)
|
| 181 |
+
|
| 182 |
+
thread = Thread(
|
| 183 |
+
target=self.glm_model.generate,
|
| 184 |
+
kwargs=dict(
|
| 185 |
+
**inputs,
|
| 186 |
+
max_new_tokens=int(max_new_tokens),
|
| 187 |
+
temperature=float(temperature),
|
| 188 |
+
top_p=float(top_p),
|
| 189 |
+
streamer=streamer
|
| 190 |
+
)
|
| 191 |
+
)
|
| 192 |
+
thread.start()
|
| 193 |
+
|
| 194 |
+
for token_id in streamer:
|
| 195 |
+
yield token_id
|
| 196 |
+
|
| 197 |
+
@spaces.GPU
|
| 198 |
+
def generate_stream_gate(self, params):
|
| 199 |
+
try:
|
| 200 |
+
for x in self.generate_stream(params):
|
| 201 |
+
yield x
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print("Caught Unknown Error", e)
|
| 204 |
+
ret = "Server Error"
|
| 205 |
+
yield ret
|
| 206 |
|
| 207 |
def load_single_file(file_path):
|
| 208 |
_, ext = os.path.splitext(file_path)
|
|
|
|
| 229 |
docs.extend(loaded_docs)
|
| 230 |
return docs
|
| 231 |
|
| 232 |
+
def split_text(txt, chunk_size=200, overlap=20):
|
| 233 |
+
if not txt:
|
| 234 |
+
return []
|
| 235 |
|
| 236 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
| 237 |
+
docs = splitter.split_documents(txt)
|
| 238 |
+
return docs
|
| 239 |
|
| 240 |
def create_embedding_model(model_file):
|
| 241 |
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
|
|
|
|
| 244 |
def save_file_paths(store_path, file_paths):
|
| 245 |
joblib.dump(file_paths, f'{store_path}/file_paths.pkl')
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
def create_vector_store(docs, store_file, embeddings):
|
| 248 |
+
if not docs:
|
| 249 |
raise ValueError("No documents provided for creating vector store")
|
| 250 |
|
| 251 |
vector_store = FAISS.from_documents(docs, embeddings)
|
| 252 |
vector_store.save_local(store_file)
|
| 253 |
return vector_store
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
|
| 256 |
retriever = vector_store.as_retriever(
|
| 257 |
search_type="similarity_score_threshold",
|
|
|
|
| 261 |
context = [doc.page_content for doc in similar_docs]
|
| 262 |
return context
|
| 263 |
|
| 264 |
+
def initialize_fn():
|
| 265 |
+
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
|
| 266 |
+
global session_manager, vector_store_manager, whisper_transcribe_model, model_worker
|
| 267 |
+
|
| 268 |
+
if audio_decoder is not None:
|
| 269 |
+
return
|
| 270 |
+
|
| 271 |
+
model_worker = ModelWorker(args.model_path, device)
|
| 272 |
+
glm_tokenizer = model_worker.glm_tokenizer
|
| 273 |
+
|
| 274 |
+
audio_decoder = AudioDecoder(
|
| 275 |
+
config_path=flow_config,
|
| 276 |
+
flow_ckpt_path=flow_checkpoint,
|
| 277 |
+
hift_ckpt_path=hift_checkpoint,
|
| 278 |
+
device=device
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
|
| 282 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
|
| 283 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
embedding_model = create_embedding_model(Embedding_Model)
|
| 285 |
+
session_manager = SessionManager()
|
| 286 |
+
vector_store_manager = VectorStoreManager(session_manager, embedding_model)
|
| 287 |
+
|
| 288 |
+
whisper_transcribe_model = whisper.load_model("base")
|
| 289 |
|
| 290 |
+
def clear_fn():
|
| 291 |
+
return [], [], '', '', '', None, None
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
def reinitialize_database(files, session_id, progress=gr.Progress()):
|
|
|
|
|
|
|
| 294 |
if not files:
|
| 295 |
return "No files uploaded. Please upload files first."
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
progress(0.5, desc="Processing documents and creating vector store...")
|
| 298 |
+
vector_store = vector_store_manager.create_store(session_id, files)
|
| 299 |
|
| 300 |
+
if vector_store is None:
|
| 301 |
+
return "Failed to create vector store. Please check your documents."
|
| 302 |
|
| 303 |
+
return "Database initialized successfully!"
|
| 304 |
+
|
| 305 |
+
def inference_fn(
|
| 306 |
+
temperature: float,
|
| 307 |
+
top_p: float,
|
| 308 |
+
max_new_token: int,
|
| 309 |
+
input_mode,
|
| 310 |
+
audio_path: str | None,
|
| 311 |
+
input_text: str | None,
|
| 312 |
+
history: list[dict],
|
| 313 |
+
session_id: str,
|
| 314 |
+
):
|
| 315 |
+
vector_store = vector_store_manager.get_store(session_id)
|
| 316 |
+
using_context = False
|
| 317 |
+
context = None
|
| 318 |
|
| 319 |
+
if input_mode == "audio":
|
| 320 |
+
assert audio_path is not None
|
| 321 |
+
history.append({"role": "user", "content": {"path": audio_path}})
|
| 322 |
+
audio_tokens = extract_speech_token(
|
| 323 |
+
whisper_model, feature_extractor, [audio_path]
|
| 324 |
+
)[0]
|
| 325 |
+
if len(audio_tokens) == 0:
|
| 326 |
+
raise gr.Error("No audio tokens extracted")
|
| 327 |
+
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
|
| 328 |
+
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
|
| 329 |
+
user_input = audio_tokens
|
| 330 |
+
system_prompt = "User will provide you with a speech instruction. Do it step by step."
|
| 331 |
+
|
| 332 |
+
if vector_store:
|
| 333 |
+
whisper_result = whisper_transcribe_model.transcribe(audio_path)
|
| 334 |
+
transcribed_text = whisper_result['text']
|
| 335 |
+
context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
|
| 336 |
+
else:
|
| 337 |
+
assert input_text is not None
|
| 338 |
+
history.append({"role": "user", "content": input_text})
|
| 339 |
+
user_input = input_text
|
| 340 |
+
system_prompt = "User will provide you with a text instruction. Do it step by step."
|
| 341 |
+
if vector_store:
|
| 342 |
+
context = query_vector_store(vector_store, input_text, 4, 0.7)
|
| 343 |
+
|
| 344 |
+
if context:
|
| 345 |
+
using_context = True
|
| 346 |
+
|
| 347 |
+
inputs = ""
|
| 348 |
+
if "<|system|>" not in inputs:
|
| 349 |
+
inputs += f"<|system|>\n{system_prompt}"
|
| 350 |
+
if ("<|context|>" not in inputs) and (using_context == True):
|
| 351 |
+
inputs += f"<|context|> According to the following content: {context}, Please answer the question"
|
| 352 |
+
if "<|context|>" not in inputs and context is not None:
|
| 353 |
+
inputs += f"<|context|>\n{context}"
|
| 354 |
+
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
|
| 355 |
+
|
| 356 |
+
with torch.no_grad():
|
| 357 |
+
text_tokens, audio_tokens = [], []
|
| 358 |
+
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
|
| 359 |
+
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
|
| 360 |
+
complete_tokens = []
|
| 361 |
+
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
|
| 362 |
+
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
|
| 363 |
+
this_uuid = str(uuid.uuid4())
|
| 364 |
+
tts_speechs = []
|
| 365 |
+
tts_mels = []
|
| 366 |
+
prev_mel = None
|
| 367 |
+
is_finalize = False
|
| 368 |
+
block_size = 10
|
| 369 |
+
|
| 370 |
+
for token_id in model_worker.generate_stream_gate({
|
| 371 |
+
"prompt": inputs,
|
| 372 |
+
"temperature": temperature,
|
| 373 |
+
"top_p": top_p,
|
| 374 |
+
"max_new_tokens": max_new_token,
|
| 375 |
+
}):
|
| 376 |
+
if isinstance(token_id, str):
|
| 377 |
+
yield history, inputs, '', token_id, None, None
|
| 378 |
+
return
|
| 379 |
+
|
| 380 |
+
if token_id == end_token_id:
|
| 381 |
+
is_finalize = True
|
| 382 |
+
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
|
| 383 |
+
block_size = 20
|
| 384 |
+
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
|
| 385 |
+
|
| 386 |
+
if prev_mel is not None:
|
| 387 |
+
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
|
| 388 |
+
|
| 389 |
+
tts_speech, tts_mel = audio_decoder.token2wav(
|
| 390 |
+
tts_token,
|
| 391 |
+
uuid=this_uuid,
|
| 392 |
+
prompt_token=flow_prompt_speech_token.to(device),
|
| 393 |
+
prompt_feat=prompt_speech_feat.to(device),
|
| 394 |
+
finalize=is_finalize
|
| 395 |
+
)
|
| 396 |
+
prev_mel = tts_mel
|
| 397 |
+
|
| 398 |
+
tts_speechs.append(tts_speech.squeeze())
|
| 399 |
+
tts_mels.append(tts_mel)
|
| 400 |
+
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
|
| 401 |
+
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
|
| 402 |
+
audio_tokens = []
|
| 403 |
+
|
| 404 |
+
if not is_finalize:
|
| 405 |
+
complete_tokens.append(token_id)
|
| 406 |
+
if token_id >= audio_offset:
|
| 407 |
+
audio_tokens.append(token_id - audio_offset)
|
| 408 |
+
else:
|
| 409 |
+
text_tokens.append(token_id)
|
| 410 |
+
|
| 411 |
+
# Generate final audio and save
|
| 412 |
+
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
|
| 413 |
+
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
|
| 414 |
|
| 415 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 416 |
+
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
|
| 417 |
+
|
| 418 |
+
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
|
| 419 |
+
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
|
| 420 |
+
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
|
| 421 |
|
| 422 |
+
def update_input_interface(input_mode):
|
| 423 |
+
if input_mode == "audio":
|
| 424 |
+
return [gr.update(visible=True), gr.update(visible=False)]
|
| 425 |
+
else:
|
| 426 |
+
return [gr.update(visible=False), gr.update(visible=True)]
|
| 427 |
|
| 428 |
if __name__ == "__main__":
|
| 429 |
parser = ArgumentParser()
|
|
|
|
| 432 |
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
|
| 433 |
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
| 434 |
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
|
|
|
|
| 435 |
parser.add_argument("--share", action='store_true')
|
| 436 |
args = parser.parse_args()
|
| 437 |
|
|
|
|
| 447 |
feature_extractor = None
|
| 448 |
glm_model = None
|
| 449 |
glm_tokenizer = None
|
| 450 |
+
session_manager = None
|
| 451 |
+
vector_store_manager = None
|
| 452 |
whisper_transcribe_model = None
|
| 453 |
model_worker = None
|
| 454 |
|
| 455 |
+
# Configuration
|
| 456 |
Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
|
|
|
|
|
|
|
| 457 |
|
| 458 |
+
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
| 460 |
+
# Add session state
|
| 461 |
+
session_id = gr.State(lambda: session_manager.create_session())
|
| 462 |
+
|
| 463 |
with gr.Row():
|
| 464 |
# Left column for chat interface
|
| 465 |
with gr.Column(scale=2):
|
|
|
|
| 524 |
file_count="multiple"
|
| 525 |
)
|
| 526 |
|
| 527 |
+
reinit_btn = gr.Button("Initialize Database", variant="secondary")
|
| 528 |
status_text = gr.Textbox(label="Status", interactive=False)
|
| 529 |
|
| 530 |
history_state = gr.State([])
|
|
|
|
| 540 |
audio,
|
| 541 |
text_input,
|
| 542 |
history_state,
|
| 543 |
+
session_id,
|
| 544 |
],
|
| 545 |
outputs=[
|
| 546 |
history_state,
|
|
|
|
| 567 |
outputs=[audio, text_input]
|
| 568 |
)
|
| 569 |
|
| 570 |
+
# Database initialization handler
|
| 571 |
reinit_btn.click(
|
| 572 |
reinitialize_database,
|
| 573 |
+
inputs=[file_upload, session_id],
|
| 574 |
outputs=[status_text]
|
| 575 |
)
|
| 576 |
+
|
| 577 |
+
# Periodic cleanup of old sessions (optional)
|
| 578 |
+
if session_manager:
|
| 579 |
+
session_manager.cleanup_old_sessions()
|
| 580 |
|
| 581 |
# Initialize models and launch interface
|
| 582 |
initialize_fn()
|