Image2Video / app1.py
rahul7star's picture
Create app1.py
1b8645f verified
raw
history blame
6.2 kB
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
import diffusers
import io
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()
log("Loading Z-Image-Turbo pipeline...")
# ------------------------
# Load FP8 text encoder + tokenizer
# ------------------------
log("Loading FP8 Qwen3-4B tokenizer + text encoder...")
fp8_tokenizer = AutoTokenizer.from_pretrained(
"jiangchengchengNLP/qwen3-4b-fp8-scaled"
)
fp8_text_encoder = AutoModelForCausalLM.from_pretrained(
"jiangchengchengNLP/qwen3-4b-fp8-scaled",
device_map="auto",
torch_dtype=torch.bfloat16, # can replace with torch.float8_e4m3fn if PyTorch nightly supports
)
# ------------------------
# Load Z-Image-Turbo
# ------------------------
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
attn_implementation="kernels-community/vllm-flash-attn3",
)
# Inject FP8 tokenizer + text encoder
pipe.tokenizer = fp8_tokenizer
pipe.text_encoder = fp8_text_encoder
pipe.to("cuda")
# ------------------------
# Pipeline debug info
# ------------------------
def pipeline_debug_info(pipe):
info = []
info.append("=== PIPELINE DEBUG INFO ===")
try:
tr = pipe.transformer.config
info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
# Z-Image-Turbo keys
info.append(f"Hidden dim: {tr.get('hidden_dim')}")
info.append(f"Attention heads: {tr.get('num_heads')}")
info.append(f"Depth (layers): {tr.get('depth')}")
info.append(f"Patch size: {tr.get('patch_size')}")
info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
info.append(f"Attention backend: {tr.get('attn_implementation')}")
except Exception as e:
info.append(f"Transformer diagnostics failed: {e}")
# VAE info
try:
vae = pipe.vae.config
info.append(f"VAE latent channels: {vae.latent_channels}")
info.append(f"VAE scaling factor: {vae.scaling_factor}")
except Exception as e:
info.append(f"VAE diagnostics failed: {e}")
return "\n".join(info)
def latent_shape_info(h, w, pipe):
try:
c = pipe.vae.config.latent_channels
s = pipe.vae.config.scaling_factor
h_lat = int(h * s)
w_lat = int(w * s)
return f"Latent shape β†’ ({c}, {h_lat}, {w_lat})"
except Exception as e:
return f"Latent shape calc failed: {e}"
# ------------------------
# IMAGE GENERATOR
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
log_buffer.truncate(0)
log_buffer.seek(0)
log("=== NEW GENERATION REQUEST ===")
log(f"Prompt: {prompt}")
log(f"Height: {height}, Width: {width}")
log(f"Inference Steps: {num_inference_steps}")
log(f"Num Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Randomized Seed β†’ {seed}")
else:
log(f"Seed: {seed}")
num_images = min(max(1, int(num_images)), 3)
# Debug pipeline info
log(pipeline_debug_info(pipe))
generator = torch.Generator("cuda").manual_seed(int(seed))
log("Running pipeline forward()...")
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
# Tensor diagnostics (shapes only)
try:
log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Latent diagnostics error: {e}")
log("Pipeline finished.")
log("Returning images...")
return result.images, seed, log_buffer.getvalue()
# ------------------------
# GRADIO UI
# ------------------------
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A majestic dragon soaring through clouds at sunset..."],
["Cozy coffee shop interior, warm lighting, rain on windows..."],
["Astronaut riding a horse on Mars, cinematic lighting..."],
["Portrait of a wise old wizard..."],
]
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
gr.Markdown("# 🎨 Z-Image-Turbo β€” Multi Image ")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("πŸš€ Generate", variant="primary")
with gr.Column(scale=1):
output_images = gr.Gallery(label="Generated Images")
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(label="Debug Log Output", lines=25, interactive=False)
gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
outputs=[output_images, used_seed, debug_log],
)
if __name__ == "__main__":
demo.launch()