task-management / assignment_engine.py
rishirajpathak's picture
Fix: Handle empty dataframes and add validation for all inputs
7917bda
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import joblib
import os
from datetime import datetime
import json
class TaskAssignmentEngine:
def __init__(self):
self.model = None
self.is_trained = False
self.results_file = "results.csv"
self.progress_file = "task_progress.json"
def load_data(self):
"""Load users, tasks, and results"""
self.users = pd.read_csv("users.csv")
self.tasks = pd.read_csv("tasks.csv")
# Load results if exists
if os.path.exists(self.results_file):
self.results = pd.read_csv(self.results_file)
else:
# Create empty results file
self.results = pd.DataFrame(columns=['task_id', 'user_id', 'time_taken', 'quality'])
self.results.to_csv(self.results_file, index=False)
# Load progress tracking
if os.path.exists(self.progress_file):
with open(self.progress_file, 'r') as f:
self.progress_data = json.load(f)
else:
self.progress_data = {}
self.save_progress_data()
print(f"βœ… Loaded {len(self.users)} users, {len(self.tasks)} tasks, {len(self.results)} results")
def prepare_training_data(self):
"""Convert results into training data for AI"""
if len(self.results) == 0:
print("⚠️ No results data - will use random assignment")
return None, None
if len(self.tasks) == 0 or len(self.users) == 0:
print("⚠️ No tasks or users - cannot prepare training data")
return None, None
# Merge results with task and user data
training_data = self.results.merge(self.tasks, on='task_id', how='inner').merge(self.users, on='user_id', how='inner')
if len(training_data) == 0:
print("⚠️ No valid training data after merge")
return None, None
# Create features: user_id, complexity, deadline
X = training_data[['user_id', 'complexity', 'deadline']].values
# Create target: success score (quality/5 * efficiency)
# efficiency = 1 - (time_taken / deadline)
efficiency = 1 - (training_data['time_taken'] / training_data['deadline'])
efficiency = np.clip(efficiency, 0, 1) # Keep between 0-1
quality_score = training_data['quality'] / 5.0 # Normalize to 0-1
# Success = weighted combination of quality and efficiency
y = (quality_score * 0.7 + efficiency * 0.3) # 70% quality, 30% efficiency
print(f"βœ… Prepared training data: {len(X)} samples")
return X, y.values
def train_model(self):
"""Train the AI model"""
X, y = self.prepare_training_data()
if X is None:
print("⚠️ No training data available")
return
# Train Random Forest model
self.model = RandomForestRegressor(n_estimators=100, random_state=42)
self.model.fit(X, y)
self.is_trained = True
# Save model
joblib.dump(self.model, 'assignment_model.pkl')
print("βœ… Model trained and saved")
def load_model(self):
"""Load existing model if available"""
if os.path.exists('assignment_model.pkl'):
self.model = joblib.load('assignment_model.pkl')
self.is_trained = True
print("βœ… Loaded existing model")
def predict_success(self, user_id, task_row):
"""Predict success probability for user-task combination"""
if not self.is_trained:
# Random assignment if no model
return np.random.random()
features = [[user_id, task_row['complexity'], task_row['deadline']]]
prediction = self.model.predict(features)[0]
return max(0, min(1, prediction)) # Ensure 0-1 range
def assign_task(self, task_id):
"""Assign a task to the best user"""
# Check if users exist
if len(self.users) == 0:
print("❌ No users available")
return None, None
# Check if task exists
task_df = self.tasks[self.tasks['task_id'] == task_id]
if len(task_df) == 0:
print(f"❌ Task {task_id} not found")
return None, None
task_row = task_df.iloc[0]
best_user = None
best_score = -1
predictions = {}
for _, user in self.users.iterrows():
user_id = user['user_id']
# Skip if user already has this task assigned
existing = self.results[
(self.results['task_id'] == task_id) &
(self.results['user_id'] == user_id)
]
if len(existing) > 0:
continue
score = self.predict_success(user_id, task_row)
predictions[user['name']] = score
if score > best_score:
best_score = score
best_user = user
print(f"\n🎯 Task {task_id} ({task_row['type']}) - Complexity: {task_row['complexity']}")
print("Predictions:")
for name, score in predictions.items():
print(f" {name}: {score:.3f}")
if best_user is not None:
print(f"βœ… ASSIGNED to {best_user['name']} (confidence: {best_score:.3f})")
# Track assignment
self.start_task_tracking(task_id, best_user['user_id'], best_user['name'])
return best_user['user_id'], best_user['name']
else:
print(f"❌ No available users for this task")
return None, None
def save_progress_data(self):
"""Save progress data to JSON file"""
with open(self.progress_file, 'w') as f:
json.dump(self.progress_data, f, indent=2, default=str)
def start_task_tracking(self, task_id, user_id, user_name):
"""Start tracking a task"""
task_key = f"{task_id}_{user_id}"
task_df = self.tasks[self.tasks['task_id'] == task_id]
if len(task_df) == 0:
print(f"❌ Task {task_id} not found for tracking")
return
task_info = task_df.iloc[0]
self.progress_data[task_key] = {
'task_id': task_id,
'user_id': user_id,
'user_name': user_name,
'task_type': task_info['type'],
'complexity': task_info['complexity'],
'deadline': task_info['deadline'],
'start_time': datetime.now().isoformat(),
'status': 'assigned',
'progress_updates': [],
'completion_time': None
}
self.save_progress_data()
print(f"⏱️ Started tracking: {user_name} β†’ {task_info['type']} (Task {task_id})")
def update_task_progress(self, task_id, user_id, progress_percent, notes=""):
"""Update task progress"""
task_key = f"{task_id}_{user_id}"
if task_key not in self.progress_data:
print(f"❌ Task {task_id} for user {user_id} not found in tracking")
return
update = {
'timestamp': datetime.now().isoformat(),
'progress_percent': progress_percent,
'notes': notes
}
self.progress_data[task_key]['progress_updates'].append(update)
self.progress_data[task_key]['status'] = 'in_progress' if progress_percent < 100 else 'completed'
self.save_progress_data()
user_name = self.progress_data[task_key]['user_name']
task_type = self.progress_data[task_key]['task_type']
print(f"πŸ“ˆ Progress Update: {user_name} β†’ {task_type} ({progress_percent}%)")
if notes:
print(f" Note: {notes}")
def add_result(self, task_id, user_id, time_taken, quality):
"""Add task completion result"""
# Validate task and user exist
task_df = self.tasks[self.tasks['task_id'] == task_id]
user_df = self.users[self.users['user_id'] == user_id]
if len(task_df) == 0:
print(f"❌ Task {task_id} not found")
return False
if len(user_df) == 0:
print(f"❌ User {user_id} not found")
return False
# Update progress tracking with completion
task_key = f"{task_id}_{user_id}"
completion_time = datetime.now()
if task_key in self.progress_data:
self.progress_data[task_key]['completion_time'] = completion_time.isoformat()
self.progress_data[task_key]['status'] = 'completed'
self.progress_data[task_key]['actual_time_taken'] = time_taken
# Calculate how long it actually took from start
start_time = datetime.fromisoformat(self.progress_data[task_key]['start_time'])
actual_duration = (completion_time - start_time).total_seconds() / 3600 # hours
self.progress_data[task_key]['actual_duration'] = round(actual_duration, 2)
self.save_progress_data()
new_result = {
'task_id': task_id,
'user_id': user_id,
'time_taken': time_taken,
'quality': quality
}
# Add to results dataframe
self.results = pd.concat([self.results, pd.DataFrame([new_result])], ignore_index=True)
# Save to CSV
self.results.to_csv(self.results_file, index=False)
# Get names for display
task_name = task_df['type'].iloc[0]
user_name = user_df['name'].iloc[0]
print(f"βœ… Task Completed: {user_name} β†’ {task_name} in {time_taken}h with quality {quality}/5")
# Show completion analytics
if task_key in self.progress_data:
actual_duration = self.progress_data[task_key]['actual_duration']
deadline = self.progress_data[task_key]['deadline']
efficiency = (deadline - time_taken) / deadline * 100
print(f" πŸ“Š Analytics: {actual_duration}h real time, {efficiency:+.1f}% vs deadline")
def show_stats(self):
"""Show system statistics"""
if len(self.results) == 0:
print("πŸ“Š No results yet - system ready for first assignments")
return
print("\nπŸ“Š SYSTEM STATISTICS")
print(f"Total completed tasks: {len(self.results)}")
print(f"Average quality: {self.results['quality'].mean():.2f}/5")
print(f"Average time taken: {self.results['time_taken'].mean():.1f}h")
# User performance
user_stats = self.results.merge(self.users, on='user_id').groupby('name').agg({
'quality': 'mean',
'time_taken': 'mean',
'task_id': 'count'
}).round(2)
user_stats.columns = ['Avg Quality', 'Avg Time', 'Tasks Done']
print("\nπŸ‘₯ USER PERFORMANCE")
print(user_stats)
def get_user_skills(self):
"""Discover user skills automatically"""
if len(self.results) == 0:
print("No data to analyze skills yet")
return
# Merge with all data
full_data = self.results.merge(self.tasks, on='task_id').merge(self.users, on='user_id')
print("\n🎯 DISCOVERED SKILLS")
for user_name in full_data['name'].unique():
user_data = full_data[full_data['name'] == user_name]
print(f"\n{user_name}:")
for task_type in user_data['type'].unique():
type_data = user_data[user_data['type'] == task_type]
avg_quality = type_data['quality'].mean()
avg_time = type_data['time_taken'].mean()
skill_level = "Expert" if avg_quality >= 4 else "Good" if avg_quality >= 3 else "Learning"
print(f" {task_type}: {avg_quality:.1f}/5 quality, {avg_time:.1f}h avg ({skill_level})")
def show_active_tasks(self):
"""Show currently active/assigned tasks"""
if not self.progress_data:
print("πŸ“‹ No active tasks")
return
active_tasks = [task for task in self.progress_data.values()
if task['status'] in ['assigned', 'in_progress']]
if not active_tasks:
print("πŸ“‹ No active tasks")
return
print("\nπŸ“‹ ACTIVE TASKS")
print("-" * 50)
for task in active_tasks:
start_time = datetime.fromisoformat(task['start_time'])
time_elapsed = (datetime.now() - start_time).total_seconds() / 3600
status_icon = "πŸ”„" if task['status'] == 'in_progress' else "πŸ“‹"
print(f"{status_icon} Task {task['task_id']}: {task['user_name']} β†’ {task['task_type']}")
print(f" Complexity: {task['complexity']}, Deadline: {task['deadline']}h")
print(f" Started: {time_elapsed:.1f}h ago")
if task['progress_updates']:
latest = task['progress_updates'][-1]
print(f" Progress: {latest['progress_percent']}%")
if latest['notes']:
print(f" Note: {latest['notes']}")
print("-" * 50)