File size: 9,035 Bytes
4b17916 2a0098d 6142af3 5b2a6b6 6142af3 2a0098d 4b17916 2a0098d 4b17916 e1111e0 2a0098d 0e14740 2a0098d 5b2a6b6 2a0098d 4c88f38 5b2a6b6 4b17916 6142af3 5b2a6b6 6142af3 5b2a6b6 4b17916 6142af3 5b2a6b6 4b17916 0e14740 2a0098d 4b17916 2a0098d 4b17916 2a0098d 6142af3 0e14740 2a0098d 6142af3 4b17916 e1111e0 6142af3 2a0098d 6142af3 2a0098d 6142af3 0e14740 6142af3 0e14740 6142af3 2a0098d 6142af3 2a0098d 6142af3 5b2a6b6 6142af3 5b2a6b6 6142af3 5b2a6b6 6142af3 5b2a6b6 6142af3 5b2a6b6 6142af3 0e14740 6142af3 0e14740 6142af3 0e14740 6142af3 0e14740 5b2a6b6 0e14740 6142af3 0e14740 6142af3 0e14740 6142af3 0e14740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import asyncio
import json
import logging
from typing import AsyncGenerator
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
# --- Configuration ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logger.info(f"LLM API Key loaded successfully (starts with: {LLM_API_KEY[:4]}...).")
# API URLs, Models, and context size limit
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "gpt-4.1-mini" # Corrected model name from previous attempts
MAX_CONTEXT_CHAR_LENGTH = 120000
# Headers for external services
SNAPZION_HEADERS = { 'Content-Type': 'application/json', 'User-Agent': 'AI-Deep-Research-Agent/1.0' }
SCRAPING_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36' }
# ***** CHANGE 1: Add a User-Agent to the LLM headers *****
LLM_HEADERS = {
"Authorization": f"Bearer {LLM_API_KEY}",
"Content-Type": "application/json",
"User-Agent": "AI-Deep-Research-Client/2.2"
}
# --- Pydantic Models ---
class DeepResearchRequest(BaseModel):
query: str
# --- FastAPI App ---
app = FastAPI(
title="AI Deep Research API",
description="Provides streaming deep research completions.",
version="2.2.0" # Version bump for critical bug fix
)
# --- Core Service Functions (Unchanged) ---
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
try:
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
response.raise_for_status()
data = await response.json()
return data.get("organic_results", [])
except Exception as e:
logger.error(f"Snapzion search failed for query '{query}': {e}")
return []
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
try:
async with session.get(url, headers=SCRAPING_HEADERS, timeout=10, ssl=False) as response:
if response.status != 200: return f"Error: HTTP status {response.status}"
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
tag.decompose()
return " ".join(soup.stripped_strings)
except Exception as e:
logger.warning(f"Scraping failed for {url}: {e}")
return f"Error: {e}"
async def search_and_scrape(session: aiohttp.ClientSession, query: str) -> tuple[str, list]:
search_results = await call_snapzion_search(session, query)
sources = search_results[:4]
if not sources: return "", []
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
scraped_contents = await asyncio.gather(*scrape_tasks)
context = "\n\n".join(
f"Source Details: Title '{sources[i]['title']}', URL '{sources[i]['link']}'\nContent:\n{content}"
for i, content in enumerate(scraped_contents) if not content.startswith("Error:")
)
return context, sources
# --- Streaming Deep Research Logic ---
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str:
return f"data: {json.dumps(data)}\n\n"
try:
async with aiohttp.ClientSession() as session:
# Step 1: Generate Sub-Questions
yield format_sse({"event": "status", "data": "Generating research plan..."})
sub_question_prompt = {
"model": LLM_MODEL,
"messages": [{ "role": "user", "content": f"You are a research planner. For the topic '{query}', create a JSON array of 3-4 key sub-questions for a research report. Respond ONLY with the JSON array. Example: [\"Question 1?\", \"Question 2?\"]" }]
}
# ***** CHANGE 2: Implement robust parsing for the API call *****
try:
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=sub_question_prompt, timeout=20) as response:
if response.status != 200:
error_text = await response.text()
logger.error(f"LLM API for planning failed with status {response.status}: {error_text}")
raise Exception(f"LLM API returned non-200 status: {response.status}")
raw_response_text = await response.text()
if not raw_response_text:
raise Exception("LLM API returned an empty response.")
result = json.loads(raw_response_text)
llm_content = result['choices'][0]['message']['content']
sub_questions = json.loads(llm_content)
except Exception as e:
logger.error(f"Failed to generate or parse research plan: {e}")
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"})
return # Stop the process if planning fails
yield format_sse({"event": "plan", "data": sub_questions})
# (The rest of the logic remains the same)
# Step 2: Concurrently research all sub-questions
research_tasks = [search_and_scrape(session, sq) for sq in sub_questions]
all_research_results = []
for i, task in enumerate(asyncio.as_completed(research_tasks)):
yield format_sse({"event": "status", "data": f"Researching: \"{sub_questions[i]}\""})
result = await task
all_research_results.append(result)
# Step 3: Consolidate all context and sources
yield format_sse({"event": "status", "data": "Consolidating research..."})
full_context = "\n\n---\n\n".join(res[0] for res in all_research_results if res[0])
all_sources = [source for res in all_research_results for source in res[1]]
unique_sources = list({s['link']: s for s in all_sources}.values())
if len(full_context) > MAX_CONTEXT_CHAR_LENGTH:
logger.warning(f"Context is too long. Truncating from {len(full_context)} to {MAX_CONTEXT_CHAR_LENGTH} characters.")
full_context = full_context[:MAX_CONTEXT_CHAR_LENGTH]
if not full_context.strip():
yield format_sse({"event": "error", "data": "Failed to gather any research context."})
return
# Step 4: Generate the final report with streaming
yield format_sse({"event": "status", "data": "Generating final report..."})
final_report_prompt = f'Synthesize the provided context into a comprehensive report on "{query}". Use the context exclusively. Structure the report with markdown.\n\n## Research Context ##\n{full_context}'
final_report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": final_report_prompt}], "stream": True}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=final_report_payload) as response:
if response.status != 200:
error_text = await response.text()
raise Exception(f"LLM API Error for final report: {response.status}, {error_text}")
async for line in response.content:
if line.strip():
line_str = line.decode('utf-8').strip()
if line_str.startswith('data:'): line_str = line_str[5:].strip()
if line_str == "[DONE]": break
try:
chunk = json.loads(line_str)
content = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
if content: yield format_sse({"event": "chunk", "data": content})
except json.JSONDecodeError: continue
yield format_sse({"event": "sources", "data": unique_sources})
except Exception as e:
logger.error(f"An error occurred during deep research: {e}")
yield format_sse({"event": "error", "data": str(e)})
finally:
yield format_sse({"event": "done", "data": "Deep research complete."})
# --- API Endpoints ---
@app.post("/v1/deepresearch/completions")
async def deep_research_endpoint(request: DeepResearchRequest):
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream") |