File size: 4,524 Bytes
726379a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
import pandas as pd
import plotly.express as px

merged_df = pd.read_csv("merged_cloud_data.csv")

tdp_fig = px.scatter(
    merged_df,
    x="Total TDP (W)",
    y="$/Hour",
    color="provider",
    log_x=True,
    log_y=True,
    trendline="ols",
    trendline_options=dict(log_y=True, log_x=True),
    trendline_scope="overall",
)


cost_fig = px.scatter(
    merged_df,
    x="GPU Total Cost",
    y="$/Hour",
    color="GPU Type",
    log_y=True,
    log_x=True,
    trendline="ols",
    trendline_options=dict(log_x=True, log_y=True),
    trendline_scope="overall",
)


color_discrete_map = {"Direct": "#2ca02c", "Indirect": "#1f77b4", "None": "#d62728"}


def generate_figure(org_name):
    org_data = data[data["Organization"] == org_name]
    model_counts = (
        org_data.groupby("Year")[["Model", "Environmental Transparency"]]
        .value_counts()
        .reset_index()
    )
    model_counts.columns = ["Year", "Model", "Environmental Transparency", "Count"]
    fig = px.bar(
        model_counts,
        x="Year",
        y="Count",
        color="Environmental Transparency",
        color_discrete_map=color_discrete_map,
        hover_data=["Model"],
    )
    fig.update_layout(xaxis_type="category")
    fig.update_xaxes(categoryorder="category ascending")
    return fig


with gr.Blocks() as demo:
    gr.Markdown("# Environmental Transparency Explorer Tool 🕵️‍♀️🌎")
    gr.Markdown(
        "## Explore the data from 'Misinformation by Omission: The Need for More Environmental Transparency in AI'"
    )
    with gr.Accordion("Methodology", open=False):
        gr.Markdown(
            'We analyzed Epoch AI\'s "Notable AI Models" dataset, which tracks information on “models that were state of the art, highly cited, \
        or otherwise historically notable” released over time. We selected the time period starting in 2010 as this is the beginning of the modern “deep learning era” \
        (as defined by Epoch AI), which is representative of the types of AI models currently trained and deployed, including all 754 models from 2010 \
        to the first quarter of 2025 in our analysis. We examined the level of environmental impact transparency for each model based on key information \
        from the Epoch AI dataset (e.g., model accessibility, training compute estimation method) as well as from individual model release content \
        (e.g., paper, model card, announcement).'
        )
    with gr.Row():
        with gr.Column():
            gr.Markdown("### All Data")
            counts = (
                data.groupby("Year")[["Model", "Environmental Transparency"]]
                .value_counts()
                .reset_index()
            )
            counts.columns = ["Year", "Model", "Environmental Transparency", "Count"]
            fig2 = px.bar(
                counts,
                x="Year",
                y="Count",
                color="Environmental Transparency",
                color_discrete_map=color_discrete_map,
                hover_data=["Model"],
            )
            fig2.update_layout(xaxis_type="category")
            fig2.update_xaxes(categoryorder="category ascending")

            plt2 = gr.Plot(fig2)
    with gr.Row():
        with gr.Column(scale=1):
            org_choice = gr.Dropdown(
                organizations,
                value="",
                label="Organizations",
                info="Pick an organization to explore their environmental disclosures",
                interactive=True,
            )
            gr.Markdown("The 3 transparency categories are:")
            gr.Markdown(
                "**Direct Disclosure**: Developers explicitly reported energy or GHG emissions, e.g., using hardware TDP, country average carbon intensity or measurements."
            )
            gr.Markdown(
                "**Indirect Disclosure**: Developers provided training compute data or released their model weights, allowing external estimates of training or inference impacts."
            )
            gr.Markdown(
                "**No Disclosure**: Environmental impact data was not publicly released and estimation approaches (as noted in Indirect Disclosure) were not possible."
            )
        with gr.Column(scale=4):
            gr.Markdown("### Data by Organization")
            fig = generate_figure(org_choice)
            plt = gr.Plot(fig)

    org_choice.select(generate_figure, inputs=[org_choice], outputs=[plt])

demo.launch()