Commit
·
b109b29
1
Parent(s):
2bf4af2
updated vision_transformer.py
Browse files- vision_transformer.py +2 -356
vision_transformer.py
CHANGED
|
@@ -1,362 +1,8 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
import torch
|
| 4 |
import torchvision
|
| 5 |
-
import torch._dynamo
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
from typing import List
|
| 8 |
from torch import nn
|
| 9 |
-
from torch.
|
| 10 |
-
|
| 11 |
-
from torchvision import datasets
|
| 12 |
-
from torchvision.transforms import v2
|
| 13 |
-
|
| 14 |
-
def display_random_images(dataset: torch.utils.data.dataset.Dataset, # or torchvision.datasets.ImageFolder?
|
| 15 |
-
classes: List[str] = None,
|
| 16 |
-
n: int = 10,
|
| 17 |
-
display_shape: bool = True,
|
| 18 |
-
rows: int = 5,
|
| 19 |
-
cols: int = 5,
|
| 20 |
-
seed: int = None):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
"""Displays a number of random images from a given dataset.
|
| 24 |
-
|
| 25 |
-
Args:
|
| 26 |
-
dataset (torch.utils.data.dataset.Dataset): Dataset to select random images from.
|
| 27 |
-
classes (List[str], optional): Names of the classes. Defaults to None.
|
| 28 |
-
n (int, optional): Number of images to display. Defaults to 10.
|
| 29 |
-
display_shape (bool, optional): Whether to display the shape of the image tensors. Defaults to True.
|
| 30 |
-
rows: number of rows of the subplot
|
| 31 |
-
cols: number of columns of the subplot
|
| 32 |
-
seed (int, optional): The seed to set before drawing random images. Defaults to None.
|
| 33 |
-
|
| 34 |
-
Usage:
|
| 35 |
-
display_random_images(train_data,
|
| 36 |
-
n=16,
|
| 37 |
-
classes=class_names,
|
| 38 |
-
rows=4,
|
| 39 |
-
cols=4,
|
| 40 |
-
display_shape=False,
|
| 41 |
-
seed=None)
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
# Setup the range to select images
|
| 45 |
-
n = min(n, len(dataset))
|
| 46 |
-
# Adjust display if n too high
|
| 47 |
-
if n > rows*cols:
|
| 48 |
-
n = rows*cols
|
| 49 |
-
#display_shape = False
|
| 50 |
-
print(f"For display purposes, n shouldn't be larger than {rows*cols}, setting to {n} and removing shape display.")
|
| 51 |
-
|
| 52 |
-
# Set random seed
|
| 53 |
-
if seed:
|
| 54 |
-
random.seed(seed)
|
| 55 |
-
|
| 56 |
-
# Get random sample indexes
|
| 57 |
-
random_samples_idx = random.sample(range(len(dataset)), k=n)
|
| 58 |
-
|
| 59 |
-
# Setup plot
|
| 60 |
-
plt.figure(figsize=(cols*4, rows*4))
|
| 61 |
-
|
| 62 |
-
#Loop through samples and display random samples
|
| 63 |
-
for i, targ_sample in enumerate(random_samples_idx):
|
| 64 |
-
targ_image, targ_label = dataset[targ_sample][0], dataset[targ_sample][1]
|
| 65 |
-
|
| 66 |
-
# 7. Adjust image tensor shape for plotting: [color_channels, height, width] -> [color_channels, height, width]
|
| 67 |
-
targ_image_adjust = targ_image.permute(1, 2, 0)
|
| 68 |
-
|
| 69 |
-
# Plot adjusted samples
|
| 70 |
-
plt.subplot(rows, cols, i+1)
|
| 71 |
-
plt.imshow(targ_image_adjust)
|
| 72 |
-
plt.axis("off")
|
| 73 |
-
if classes:
|
| 74 |
-
title = f"class: {classes[targ_label]}"
|
| 75 |
-
if display_shape:
|
| 76 |
-
title = title + f"\nshape: {targ_image_adjust.shape}"
|
| 77 |
-
plt.title(title)
|
| 78 |
-
|
| 79 |
-
def create_dataloaders(
|
| 80 |
-
train_dir: str,
|
| 81 |
-
test_dir: str,
|
| 82 |
-
train_transform: v2.Compose,
|
| 83 |
-
test_transform: v2.Compose,
|
| 84 |
-
batch_size: int,
|
| 85 |
-
num_workers: int=os.cpu_count()
|
| 86 |
-
):
|
| 87 |
-
"""Creates training and testing DataLoaders.
|
| 88 |
-
|
| 89 |
-
Takes in a training directory and testing directory path and turns
|
| 90 |
-
them into PyTorch Datasets and then into PyTorch DataLoaders.
|
| 91 |
-
|
| 92 |
-
Args:
|
| 93 |
-
train_dir: Path to training directory.
|
| 94 |
-
test_dir: Path to testing directory.
|
| 95 |
-
train_transform: torchvision transforms to perform on training data.
|
| 96 |
-
test_transform: torchvision transforms to perform on test data.
|
| 97 |
-
batch_size: Number of samples per batch in each of the DataLoaders.
|
| 98 |
-
num_workers: An integer for number of workers per DataLoader.
|
| 99 |
-
|
| 100 |
-
Returns:
|
| 101 |
-
A tuple of (train_dataloader, test_dataloader, class_names).
|
| 102 |
-
Where class_names is a list of the target classes.
|
| 103 |
-
Example usage:
|
| 104 |
-
train_dataloader, test_dataloader, class_names = \
|
| 105 |
-
= create_dataloaders(train_dir=path/to/train_dir,
|
| 106 |
-
test_dir=path/to/test_dir,
|
| 107 |
-
transform=some_transform,
|
| 108 |
-
batch_size=32,
|
| 109 |
-
num_workers=4)
|
| 110 |
-
"""
|
| 111 |
-
# Use ImageFolder to create dataset(s)
|
| 112 |
-
train_data = datasets.ImageFolder(train_dir, transform=train_transform)
|
| 113 |
-
test_data = datasets.ImageFolder(test_dir, transform=test_transform)
|
| 114 |
-
|
| 115 |
-
# Get class names
|
| 116 |
-
class_names = train_data.classes
|
| 117 |
-
|
| 118 |
-
# Turn images into data loaders
|
| 119 |
-
train_dataloader = DataLoader(
|
| 120 |
-
train_data,
|
| 121 |
-
batch_size=batch_size,
|
| 122 |
-
shuffle=True,
|
| 123 |
-
num_workers=num_workers,
|
| 124 |
-
pin_memory=True, #enables fast data transfers to CUDA-enabled GPU
|
| 125 |
-
)
|
| 126 |
-
test_dataloader = DataLoader(
|
| 127 |
-
test_data,
|
| 128 |
-
batch_size=batch_size,
|
| 129 |
-
shuffle=False,
|
| 130 |
-
num_workers=num_workers,
|
| 131 |
-
pin_memory=True, #enables fast data transfers to CUDA-enabled GPU
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
return train_dataloader, test_dataloader, class_names
|
| 135 |
-
|
| 136 |
-
def create_dataloader_for_vit(
|
| 137 |
-
vit_model: str="bitbase16",
|
| 138 |
-
train_dir: str="./",
|
| 139 |
-
test_dir: str="./",
|
| 140 |
-
batch_size: int=64,
|
| 141 |
-
aug: bool=True,
|
| 142 |
-
display_imgs: bool=True,
|
| 143 |
-
num_workers: int=os.cpu_count()
|
| 144 |
-
):
|
| 145 |
-
|
| 146 |
-
"""
|
| 147 |
-
Creates data loaders for the training and test datasets to be used to traing visiton transformers.
|
| 148 |
-
|
| 149 |
-
Args:
|
| 150 |
-
vit_model (str): The name of the ViT model to use. Default is "bitbase16".
|
| 151 |
-
train_dir (str): The path to the training dataset directory. Default is TRAIN_DIR.
|
| 152 |
-
test_dir (str): The path to the test dataset directory. Default is TEST_DIR.
|
| 153 |
-
batch_size (int): The batch size for the data loaders. Default is BATCH_SIZE.
|
| 154 |
-
aug (bool): Whether to apply data augmentation or not. Default is True.
|
| 155 |
-
display_imgs (bool): Whether to display sample images or not. Default is True.
|
| 156 |
-
|
| 157 |
-
Returns:
|
| 158 |
-
train_dataloader (torch.utils.data.DataLoader): The data loader for the training dataset.
|
| 159 |
-
test_dataloader (torch.utils.data.DataLoader): The data loader for the test dataset.
|
| 160 |
-
class_names (list): A list of class names.
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
IMG_SIZE = 224
|
| 164 |
-
IMG_SIZE_2 = 384
|
| 165 |
-
|
| 166 |
-
# Manual transforms for the training dataset
|
| 167 |
-
manual_transforms = v2.Compose([
|
| 168 |
-
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 169 |
-
v2.ToImage(),
|
| 170 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 171 |
-
])
|
| 172 |
-
|
| 173 |
-
# ViT-Base/16 transforms
|
| 174 |
-
if vit_model == "vitbase16":
|
| 175 |
-
|
| 176 |
-
# Manual transforms for the training dataset
|
| 177 |
-
if aug:
|
| 178 |
-
manual_transforms_train_vitb = v2.Compose([
|
| 179 |
-
v2.TrivialAugmentWide(),
|
| 180 |
-
v2.Resize((256, 256)),
|
| 181 |
-
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 182 |
-
v2.ToImage(),
|
| 183 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 184 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 185 |
-
std=[0.229, 0.224, 0.225])
|
| 186 |
-
])
|
| 187 |
-
else:
|
| 188 |
-
manual_transforms_train_vitb = v2.Compose([
|
| 189 |
-
v2.Resize((256, 256)),
|
| 190 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 191 |
-
v2.ToImage(),
|
| 192 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 193 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 194 |
-
std=[0.229, 0.224, 0.225])
|
| 195 |
-
])
|
| 196 |
-
|
| 197 |
-
# Manual transforms for the test dataset
|
| 198 |
-
manual_transforms_test_vitb = v2.Compose([
|
| 199 |
-
v2.Resize((256, 256)),
|
| 200 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 201 |
-
v2.ToImage(),
|
| 202 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 203 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 204 |
-
std=[0.229, 0.224, 0.225])
|
| 205 |
-
])
|
| 206 |
-
|
| 207 |
-
# Create data loaders for ViT-Base
|
| 208 |
-
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 209 |
-
train_dir=train_dir,
|
| 210 |
-
test_dir=test_dir,
|
| 211 |
-
train_transform=manual_transforms_train_vitb,
|
| 212 |
-
test_transform=manual_transforms_test_vitb,
|
| 213 |
-
batch_size=batch_size,
|
| 214 |
-
num_workers=num_workers
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
if vit_model == "vitbase16_2":
|
| 218 |
-
|
| 219 |
-
# Manual transforms for the training dataset
|
| 220 |
-
if aug:
|
| 221 |
-
manual_transforms_train_vitb = v2.Compose([
|
| 222 |
-
v2.TrivialAugmentWide(),
|
| 223 |
-
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 224 |
-
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 225 |
-
v2.ToImage(),
|
| 226 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 227 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 228 |
-
std=[0.229, 0.224, 0.225])
|
| 229 |
-
])
|
| 230 |
-
else:
|
| 231 |
-
manual_transforms_train_vitb = v2.Compose([
|
| 232 |
-
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 233 |
-
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 234 |
-
v2.ToImage(),
|
| 235 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 236 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 237 |
-
std=[0.229, 0.224, 0.225])
|
| 238 |
-
])
|
| 239 |
-
|
| 240 |
-
# Manual transforms for the test dataset
|
| 241 |
-
manual_transforms_test_vitb = v2.Compose([
|
| 242 |
-
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 243 |
-
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 244 |
-
v2.ToImage(),
|
| 245 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 246 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 247 |
-
std=[0.229, 0.224, 0.225])
|
| 248 |
-
])
|
| 249 |
-
|
| 250 |
-
# Create data loaders for ViT-Base
|
| 251 |
-
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 252 |
-
train_dir=train_dir,
|
| 253 |
-
test_dir=test_dir,
|
| 254 |
-
train_transform=manual_transforms_train_vitb,
|
| 255 |
-
test_transform=manual_transforms_test_vitb,
|
| 256 |
-
batch_size=batch_size,
|
| 257 |
-
num_workers=num_workers
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
# ViT-Large/16 transforms
|
| 261 |
-
elif vit_model == "vitlarge16":
|
| 262 |
-
|
| 263 |
-
# Manual transforms for the training dataset
|
| 264 |
-
if aug:
|
| 265 |
-
manual_transforms_train_vitl = v2.Compose([
|
| 266 |
-
v2.TrivialAugmentWide(),
|
| 267 |
-
v2.Resize((242, 242)),
|
| 268 |
-
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 269 |
-
v2.ToImage(),
|
| 270 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 271 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 272 |
-
std=[0.229, 0.224, 0.225])
|
| 273 |
-
])
|
| 274 |
-
else:
|
| 275 |
-
manual_transforms_train_vitl = v2.Compose([
|
| 276 |
-
v2.Resize((242, 242)),
|
| 277 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 278 |
-
v2.ToImage(),
|
| 279 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 280 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 281 |
-
std=[0.229, 0.224, 0.225])
|
| 282 |
-
])
|
| 283 |
-
|
| 284 |
-
# Manual transforms for the test dataset
|
| 285 |
-
manual_transforms_test_vitl = v2.Compose([
|
| 286 |
-
v2.Resize((242, 242)),
|
| 287 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 288 |
-
v2.ToImage(),
|
| 289 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 290 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 291 |
-
std=[0.229, 0.224, 0.225])
|
| 292 |
-
])
|
| 293 |
-
|
| 294 |
-
# Create data loaders for ViT-Large/16
|
| 295 |
-
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 296 |
-
train_dir=train_dir,
|
| 297 |
-
test_dir=test_dir,
|
| 298 |
-
train_transform=manual_transforms_train_vitl,
|
| 299 |
-
test_transform=manual_transforms_test_vitl,
|
| 300 |
-
batch_size=batch_size,
|
| 301 |
-
num_workers=num_workers
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
# ViT-Large/32 transforms
|
| 305 |
-
else:
|
| 306 |
-
# Manual transforms for the training dataset
|
| 307 |
-
if aug:
|
| 308 |
-
manual_transforms_train_vitl = v2.Compose([
|
| 309 |
-
v2.TrivialAugmentWide(),
|
| 310 |
-
v2.Resize((256, 256)),
|
| 311 |
-
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 312 |
-
v2.ToImage(),
|
| 313 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 314 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 315 |
-
std=[0.229, 0.224, 0.225])
|
| 316 |
-
])
|
| 317 |
-
else:
|
| 318 |
-
manual_transforms_train_vitl = v2.Compose([
|
| 319 |
-
v2.Resize((256, 256)),
|
| 320 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 321 |
-
v2.ToImage(),
|
| 322 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 323 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 324 |
-
std=[0.229, 0.224, 0.225])
|
| 325 |
-
])
|
| 326 |
-
|
| 327 |
-
# Manual transforms for the test dataset
|
| 328 |
-
manual_transforms_test_vitl = v2.Compose([
|
| 329 |
-
v2.Resize((256, 256)),
|
| 330 |
-
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 331 |
-
v2.ToImage(),
|
| 332 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 333 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 334 |
-
std=[0.229, 0.224, 0.225])
|
| 335 |
-
])
|
| 336 |
-
|
| 337 |
-
# Create data loaders for ViT-Large/32
|
| 338 |
-
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 339 |
-
train_dir=train_dir,
|
| 340 |
-
test_dir=test_dir,
|
| 341 |
-
train_transform=manual_transforms_train_vitl,
|
| 342 |
-
test_transform=manual_transforms_test_vitl,
|
| 343 |
-
batch_size=batch_size,
|
| 344 |
-
num_workers=num_workers
|
| 345 |
-
)
|
| 346 |
-
|
| 347 |
-
# Display images
|
| 348 |
-
if display_imgs:
|
| 349 |
-
train_data = datasets.ImageFolder(train_dir, transform=manual_transforms)
|
| 350 |
-
display_random_images(train_data,
|
| 351 |
-
n=25,
|
| 352 |
-
classes=class_names,
|
| 353 |
-
rows=5,
|
| 354 |
-
cols=5,
|
| 355 |
-
display_shape=False,
|
| 356 |
-
seed=None)
|
| 357 |
-
|
| 358 |
-
return train_dataloader, test_dataloader, class_names
|
| 359 |
-
|
| 360 |
|
| 361 |
# Create Pytorch's default ViT models
|
| 362 |
def create_vit(
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchvision
|
|
|
|
|
|
|
|
|
|
| 3 |
from torch import nn
|
| 4 |
+
from torch.nn.init import trunc_normal_
|
| 5 |
+
#, xavier_normal_, zeros_, orthogonal_, kaiming_normal_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Create Pytorch's default ViT models
|
| 8 |
def create_vit(
|