File size: 9,633 Bytes
3c45764
 
 
 
 
 
 
 
 
 
efb85e3
3c45764
 
 
 
 
 
 
 
 
efb85e3
 
 
3c45764
 
 
 
 
 
 
 
 
 
 
 
 
efb85e3
 
 
 
 
 
3c45764
 
 
 
 
 
 
efb85e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c45764
efb85e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c45764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
Gradio app for ResShift Super-Resolution
Hosted on Hugging Face Spaces
"""
import gradio as gr
import torch
from PIL import Image
import torchvision.transforms.functional as TF
from pathlib import Path
import sys
from huggingface_hub import hf_hub_download

# Add src to path
sys.path.insert(0, str(Path(__file__).parent / "src"))

from model import FullUNET
from autoencoder import get_vqgan
from noiseControl import resshift_schedule
from config import device, T, k, normalize_input, latent_flag, gt_size

# Hugging Face repo ID for weights
HF_WEIGHTS_REPO_ID = "shekkari21/DiffusionSR-weights"

# Global variables for loaded models
model = None
autoencoder = None
eta_schedule = None


def load_models():
    """Load models on startup."""
    global model, autoencoder, eta_schedule
    
    print("Loading models...")
    
    # Load model checkpoint
    checkpoint_path = "checkpoints/ckpts/model_3200.pth"
    checkpoint_file = Path(checkpoint_path)
    
    # Download from Hugging Face if not found locally
    if not checkpoint_file.exists():
        # Try to find any checkpoint locally first
        ckpt_dir = Path("checkpoints/ckpts")
        if ckpt_dir.exists():
            checkpoints = list(ckpt_dir.glob("model_*.pth"))
            if checkpoints:
                checkpoint_path = str(checkpoints[-1])  # Use latest
                print(f"Using checkpoint: {checkpoint_path}")
            else:
                # Download from Hugging Face
                print(f"Checkpoint not found locally. Downloading from Hugging Face...")
                try:
                    # Files are in root of weights repo, download to local directory structure
                    ckpt_dir.mkdir(parents=True, exist_ok=True)
                    downloaded_path = hf_hub_download(
                        repo_id=HF_WEIGHTS_REPO_ID,
                        filename="model_3200.pth",
                        local_dir=str(ckpt_dir),
                        local_dir_use_symlinks=False
                    )
                    checkpoint_path = str(ckpt_dir / "model_3200.pth")
                    print(f"✓ Downloaded checkpoint: {checkpoint_path}")
                except Exception as e:
                    raise FileNotFoundError(
                        f"Could not download checkpoint from Hugging Face: {e}\n"
                        f"Please ensure the file exists in the repository."
                    )
        else:
            # Create directory and download
            ckpt_dir.mkdir(parents=True, exist_ok=True)
            print(f"Checkpoint not found locally. Downloading from Hugging Face...")
            try:
                downloaded_path = hf_hub_download(
                    repo_id=HF_WEIGHTS_REPO_ID,
                    filename="model_3200.pth",
                    local_dir=str(ckpt_dir),
                    local_dir_use_symlinks=False
                )
                checkpoint_path = str(ckpt_dir / "model_3200.pth")
                print(f"✓ Downloaded checkpoint: {checkpoint_path}")
            except Exception as e:
                raise FileNotFoundError(
                    f"Could not download checkpoint from Hugging Face: {e}\n"
                    f"Please ensure the file exists in the repository."
                )
    
    model = FullUNET()
    model = model.to(device)
    
    ckpt = torch.load(checkpoint_path, map_location=device)
    if 'state_dict' in ckpt:
        state_dict = ckpt['state_dict']
    else:
        state_dict = ckpt
    
    # Handle compiled model checkpoints
    if any(key.startswith('_orig_mod.') for key in state_dict.keys()):
        new_state_dict = {}
        for key, val in state_dict.items():
            if key.startswith('_orig_mod.'):
                new_state_dict[key[10:]] = val
            else:
                new_state_dict[key] = val
        state_dict = new_state_dict
    
    model.load_state_dict(state_dict)
    model.eval()
    print("✓ Model loaded")
    
    # Load VQGAN autoencoder
    autoencoder = get_vqgan()
    print("✓ VQGAN autoencoder loaded")
    
    # Initialize noise schedule
    eta_schedule = resshift_schedule().to(device)
    eta_schedule = eta_schedule[:, None, None, None]
    print("✓ Noise schedule initialized")
    
    return "Models loaded successfully!"


def _scale_input(x_t, t, eta_schedule, k, normalize_input, latent_flag):
    """Scale input based on timestep."""
    if normalize_input and latent_flag:
        eta_t = eta_schedule[t]
        std = torch.sqrt(eta_t * k**2 + 1)
        x_t_scaled = x_t / std
    else:
        x_t_scaled = x_t
    return x_t_scaled


def super_resolve(input_image):
    """
    Perform super-resolution on input image.
    
    Args:
        input_image: PIL Image or numpy array
    
    Returns:
        PIL Image of super-resolved output
    """
    if input_image is None:
        return None
    
    if model is None or autoencoder is None:
        return None
    
    try:
        # Convert to PIL Image if needed
        if isinstance(input_image, Image.Image):
            img = input_image
        else:
            img = Image.fromarray(input_image)
        
        # Resize to target size (256x256)
        img = img.resize((gt_size, gt_size), Image.BICUBIC)
        
        # Convert to tensor
        img_tensor = TF.to_tensor(img).unsqueeze(0).to(device)  # (1, 3, 256, 256)
        
        # Run inference
        with torch.no_grad():
            # Encode to latent space
            lr_latent = autoencoder.encode(img_tensor)  # (1, 3, 64, 64)
            
            # Initialize x_t at maximum timestep
            epsilon_init = torch.randn_like(lr_latent)
            eta_max = eta_schedule[T - 1]
            x_t = lr_latent + k * torch.sqrt(eta_max) * epsilon_init
            
            # Full diffusion sampling loop
            for t_step in range(T - 1, -1, -1):
                t = torch.full((lr_latent.shape[0],), t_step, device=device, dtype=torch.long)
                
                # Scale input
                x_t_scaled = _scale_input(x_t, t, eta_schedule, k, normalize_input, latent_flag)
                
                # Predict x0
                x0_pred = model(x_t_scaled, t, lq=lr_latent)
                
                # Compute x_{t-1} using equation (7)
                if t_step > 0:
                    # Equation (7) from ResShift paper:
                    # μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * f_θ(x_t, y_0, t)
                    # Σ_θ = κ² * (η_{t-1}/η_t) * α_t
                    # x_{t-1} = μ_θ + sqrt(Σ_θ) * ε
                    eta_t = eta_schedule[t_step]
                    eta_t_minus_1 = eta_schedule[t_step - 1]
                    
                    # Compute alpha_t = η_t - η_{t-1}
                    alpha_t = eta_t - eta_t_minus_1
                    
                    # Compute mean: μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * x0_pred
                    mean = (eta_t_minus_1 / eta_t) * x_t + (alpha_t / eta_t) * x0_pred
                    
                    # Compute variance: Σ_θ = κ² * (η_{t-1}/η_t) * α_t
                    variance = k**2 * (eta_t_minus_1 / eta_t) * alpha_t
                    
                    # Sample: x_{t-1} = μ_θ + sqrt(Σ_θ) * ε
                    noise = torch.randn_like(x_t)
                    nonzero_mask = torch.tensor(1.0 if t_step > 0 else 0.0, device=x_t.device).view(-1, *([1] * (len(x_t.shape) - 1)))
                    x_t = mean + nonzero_mask * torch.sqrt(variance) * noise
                else:
                    x_t = x0_pred
            
            # Decode back to pixel space
            sr_latent = x_t
            sr_image = autoencoder.decode(sr_latent)  # (1, 3, 256, 256)
            sr_image = sr_image.clamp(0, 1)
        
        # Convert to PIL Image
        sr_pil = TF.to_pil_image(sr_image.squeeze(0).cpu())
        
        return sr_pil
        
    except Exception as e:
        print(f"Error during inference: {str(e)}")
        import traceback
        traceback.print_exc()
        return None


# Create Gradio interface
with gr.Blocks(title="ResShift Super-Resolution") as demo:
    gr.Markdown(
        """
        # ResShift Super-Resolution
        
        Upload a low-resolution image to get a super-resolved version using ResShift diffusion model.
        
        **Note**: The model performs 4x super-resolution in latent space (256x256 → 256x256 pixel space, but with enhanced quality).
        """
    )
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Input Image (Low Resolution)",
                type="pil",
                height=300
            )
            submit_btn = gr.Button("Super-Resolve", variant="primary")
        
        with gr.Column():
            output_image = gr.Image(
                label="Super-Resolved Output",
                type="pil",
                height=300
            )
    
    status = gr.Textbox(label="Status", value="Loading models...", interactive=False)
    
    # Load models on startup
    demo.load(
        fn=load_models,
        outputs=status,
        show_progress=True
    )
    
    # Process on button click
    submit_btn.click(
        fn=super_resolve,
        inputs=input_image,
        outputs=output_image,
        show_progress=True
    )
    
    # Also process on image upload
    input_image.change(
        fn=super_resolve,
        inputs=input_image,
        outputs=output_image,
        show_progress=True
    )


if __name__ == "__main__":
    demo.launch(share=True)