DiffusionSR / src /metrics.py
shekkari21's picture
Commiting all the super resolution files
3c45764
"""
Metrics for image quality evaluation.
This module provides PSNR, SSIM, and LPIPS metrics for evaluating
super-resolution model performance.
"""
import torch
import lpips
def compute_psnr(img1, img2):
"""
Compute PSNR between two images.
Args:
img1: First image tensor (B, C, H, W) in range [0, 1]
img2: Second image tensor (B, C, H, W) in range [0, 1]
Returns:
psnr: PSNR value in dB
"""
mse = torch.mean((img1 - img2) ** 2)
if mse == 0:
return float('inf')
psnr = 20 * torch.log10(1.0 / torch.sqrt(mse))
return psnr.item()
def compute_ssim(img1, img2):
"""
Compute SSIM between two images.
Args:
img1: First image tensor (B, C, H, W) in range [0, 1]
img2: Second image tensor (B, C, H, W) in range [0, 1]
Returns:
ssim: SSIM value (0 to 1, higher is better)
"""
# SSIM parameters
C1 = 0.01 ** 2
C2 = 0.03 ** 2
mu1 = torch.mean(img1, dim=[2, 3], keepdim=True)
mu2 = torch.mean(img2, dim=[2, 3], keepdim=True)
sigma1_sq = torch.var(img1, dim=[2, 3], keepdim=True)
sigma2_sq = torch.var(img2, dim=[2, 3], keepdim=True)
sigma12 = torch.mean((img1 - mu1) * (img2 - mu2), dim=[2, 3], keepdim=True)
ssim_n = (2 * mu1 * mu2 + C1) * (2 * sigma12 + C2)
ssim_d = (mu1 ** 2 + mu2 ** 2 + C1) * (sigma1_sq + sigma2_sq + C2)
ssim = ssim_n / ssim_d
return ssim.mean().item()
def compute_lpips(img1, img2, lpips_model):
"""
Compute LPIPS between two images.
Args:
img1: First image tensor (B, C, H, W) in range [0, 1]
img2: Second image tensor (B, C, H, W) in range [0, 1]
lpips_model: Initialized LPIPS model
Returns:
lpips: LPIPS value (lower is better, typically 0-1 range)
"""
# LPIPS expects images in range [-1, 1]
img1_lpips = img1 * 2.0 - 1.0 # [0, 1] -> [-1, 1]
img2_lpips = img2 * 2.0 - 1.0 # [0, 1] -> [-1, 1]
# Ensure tensors are on the correct device
device = next(lpips_model.parameters()).device
img1_lpips = img1_lpips.to(device)
img2_lpips = img2_lpips.to(device)
with torch.no_grad():
lpips_value = lpips_model(img1_lpips, img2_lpips).mean().item()
return lpips_value