NBA_Analysis / app.py
shekkari21's picture
made changes
8d5b1f0
"""
Minimal Gradio app for CrewAI data analysis with file upload and parallel agent execution.
"""
import os
import gradio as gr
import traceback
from crew import create_flow_crew, create_analyst_only_crew
def process_file_and_analyze(file, user_query: str = "", engineer_result: str = None) -> tuple[str, str]:
"""
Process uploaded file and run all agents (Engineer, Analyst, Storyteller), then merge results.
Used for the "Analyze Dataset" button.
Args:
file: Uploaded file object
user_query: The user's analysis query/task (empty for general analysis)
engineer_result: Previously computed engineer result (if available)
Returns:
tuple: (merged_results, engineer_result) - engineer_result is stored for reuse
"""
if file is None:
return "Please upload a CSV file.", engineer_result or ""
# Use default analysis if no query provided
if not user_query or not user_query.strip():
user_query = "Provide a comprehensive analysis of the dataset including: top performers, key statistics, interesting patterns, and notable insights."
try:
# Get file path
file_path = file.name if hasattr(file, 'name') else str(file)
csv_path = file_path
# Full analysis: run all agents
crew = create_flow_crew(user_query.strip(), csv_path)
result = crew.kickoff()
merged_output = []
stored_engineer_result = ""
# Get engineer result (first task)
if hasattr(result, 'tasks_output') and result.tasks_output:
if len(result.tasks_output) >= 1:
engineer_output = str(result.tasks_output[0])
stored_engineer_result = engineer_output
merged_output.append("## Engineer Agent Results")
merged_output.append("")
merged_output.append(engineer_output)
merged_output.append("")
merged_output.append("---")
merged_output.append("")
# Get analyst result (second task)
if hasattr(result, 'tasks_output') and result.tasks_output:
if len(result.tasks_output) >= 2:
analyst_output = str(result.tasks_output[1])
merged_output.append("## Analyst Agent Results")
merged_output.append("")
merged_output.append(analyst_output)
merged_output.append("")
merged_output.append("---")
merged_output.append("")
# Get storyteller result (third task)
if hasattr(result, 'tasks_output') and result.tasks_output:
if len(result.tasks_output) >= 3:
storyteller_output = str(result.tasks_output[2])
merged_output.append("## Storyteller Agent Results")
merged_output.append("")
merged_output.append(storyteller_output)
merged_output.append("")
# If we couldn't extract from tasks_output, use the full result
if not merged_output:
merged_output.append("## Complete Analysis Results")
merged_output.append("")
merged_output.append(str(result))
return "\n".join(merged_output), stored_engineer_result
except Exception as e:
error_trace = traceback.format_exc()
error_msg = f"Error: {str(e)}\n\nTraceback:\n{error_trace}"
print(error_msg)
return error_msg, engineer_result or ""
def process_question_only(file, user_query: str) -> str:
"""
Process a specific user question using only the Analyst agent (no Engineer, no Storyteller).
Used for the "Analyze with Question" button.
Args:
file: Uploaded file object
user_query: The user's specific analysis question
Returns:
str: Analyst results only
"""
if file is None:
return "Please upload a CSV file."
if not user_query or not user_query.strip():
return "Please enter a question."
try:
# Get file path
file_path = file.name if hasattr(file, 'name') else str(file)
csv_path = file_path
# Run only analyst
crew = create_analyst_only_crew(user_query.strip(), csv_path)
result = crew.kickoff()
# Get analyst result
if hasattr(result, 'tasks_output') and result.tasks_output:
if len(result.tasks_output) >= 1:
analyst_output = str(result.tasks_output[0])
return analyst_output
# Fallback to full result
return str(result)
except Exception as e:
error_trace = traceback.format_exc()
error_msg = f"Error: {str(e)}\n\nTraceback:\n{error_trace}"
print(error_msg)
return error_msg
def create_app():
"""Create and return the Gradio interface."""
with gr.Blocks(title="NBA Stats Analysis with CrewAI", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# NBA Stats Analysis with CrewAI
Upload your NBA statistics CSV file to get comprehensive analysis with engaging storylines.
**How it works:**
- **Engineer Agent**: Examines and validates your dataset
- **Analyst Agent**: Performs deep analysis (general or based on your question)
- **Storyteller Agent**: Creates headlines and compelling storylines
All agents work in parallel and results are merged for you!
""")
# Store engineer result in state
engineer_state = gr.State(value="")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV File",
file_types=[".csv"],
type="filepath"
)
analyze_btn = gr.Button(
"Analyze Dataset",
variant="primary",
size="lg",
visible=False
)
gr.Markdown("### Ask a Specific Question")
query_input = gr.Textbox(
label="Your Analysis Question",
placeholder="e.g., 'Who are the top 5 three-point shooters?' or 'Analyze the best players by assists'",
lines=2
)
question_output = gr.Markdown(
value="",
label="Answer",
visible=False
)
query_btn = gr.Button(
"Analyze with Question",
variant="secondary",
size="lg"
)
with gr.Row():
with gr.Column():
status_output = gr.Markdown(
value="",
label="Agent Status",
visible=False
)
with gr.Row():
with gr.Column():
merged_output = gr.Markdown(
value="**Ready to analyze!** Upload a CSV file above, then click 'Analyze Dataset' to get started.",
label="Full Analysis Results"
)
def show_loading_animation(is_question: bool = False):
"""Show loading animation while processing."""
if is_question:
return """## Analysis in Progress...
<div style="text-align: center; padding: 20px;">
<div style="font-size: 18px; margin-bottom: 15px;">
<strong>Analyzing your question...</strong>
</div>
<div style="display: flex; justify-content: center; max-width: 600px; margin: 0 auto;">
<div style="text-align: center; margin: 10px;">
<div style="font-size: 14px; font-weight: bold;">Analyst Agent</div>
<div style="font-size: 12px; color: #666; margin-top: 5px;">Processing query...</div>
</div>
</div>
<div style="margin-top: 25px; font-size: 14px; color: #888;">
This may take a moment... Please wait while the agent processes your question.
</div>
</div>"""
else:
return """## Analysis in Progress...
<div style="text-align: center; padding: 20px;">
<div style="font-size: 18px; margin-bottom: 15px;">
<strong>Agents are working in parallel...</strong>
</div>
<div style="display: flex; justify-content: space-around; max-width: 600px; margin: 0 auto; flex-wrap: wrap;">
<div style="text-align: center; margin: 10px;">
<div style="font-size: 14px; font-weight: bold;">Engineer Agent</div>
<div style="font-size: 12px; color: #666; margin-top: 5px;">Examining dataset...</div>
</div>
<div style="text-align: center; margin: 10px;">
<div style="font-size: 14px; font-weight: bold;">Analyst Agent</div>
<div style="font-size: 12px; color: #666; margin-top: 5px;">Analyzing data...</div>
</div>
<div style="text-align: center; margin: 10px;">
<div style="font-size: 14px; font-weight: bold;">Storyteller Agent</div>
<div style="font-size: 12px; color: #666; margin-top: 5px;">Creating storylines...</div>
</div>
</div>
<div style="margin-top: 25px; font-size: 14px; color: #888;">
This may take a moment... Please wait while the agents process your data.
</div>
</div>"""
def on_file_upload(file):
"""Handle file upload - show analyze button and reset state."""
if file is not None:
return gr.update(visible=True), ""
return gr.update(visible=False), ""
def start_full_analysis(file, engineer_result: str = ""):
"""Start full analysis and show loading animation."""
loading_msg = show_loading_animation(is_question=False)
return gr.update(visible=True, value=loading_msg), gr.update(value="")
def complete_full_analysis(file, engineer_result: str = ""):
"""Complete full analysis and return results."""
result, new_engineer_result = process_file_and_analyze(file, "", engineer_result)
if result.startswith("Error:") or result.startswith("Please upload"):
result = f"### {result}"
return result, gr.update(visible=False), new_engineer_result
def start_question_analysis(file, user_query: str = ""):
"""Start question analysis and show loading animation."""
loading_msg = show_loading_animation(is_question=True)
return gr.update(visible=True, value=loading_msg), gr.update(visible=True, value="")
def complete_question_analysis(file, user_query: str = ""):
"""Complete question analysis and return results."""
result = process_question_only(file, user_query)
if result.startswith("Error:") or result.startswith("Please"):
result = f"### {result}"
else:
# Format the answer in a highlighted box
result = f"""<div style="background-color: #f0f7ff; border: 2px solid #4a90e2; border-radius: 8px; padding: 15px; margin: 10px 0;">
{result}
</div>"""
return result, gr.update(visible=False)
# When file is uploaded, show analyze button and reset engineer state
file_input.change(
fn=on_file_upload,
inputs=[file_input],
outputs=[analyze_btn, engineer_state]
)
# Analyze button - runs general analysis (no query needed)
analyze_btn.click(
fn=start_full_analysis,
inputs=[file_input, engineer_state],
outputs=[status_output, merged_output]
).then(
fn=complete_full_analysis,
inputs=[file_input, engineer_state],
outputs=[merged_output, status_output, engineer_state]
)
# Query button - runs analysis with user's question (only Analyst)
query_btn.click(
fn=start_question_analysis,
inputs=[file_input, query_input],
outputs=[status_output, question_output]
).then(
fn=complete_question_analysis,
inputs=[file_input, query_input],
outputs=[question_output, status_output]
)
# Allow Enter key to submit query
query_input.submit(
fn=start_question_analysis,
inputs=[file_input, query_input],
outputs=[status_output, question_output]
).then(
fn=complete_question_analysis,
inputs=[file_input, query_input],
outputs=[question_output, status_output]
)
return app
if __name__ == "__main__":
try:
print("Creating Gradio app...")
app = create_app()
print("Launching Gradio app...")
# For Hugging Face Spaces, use default launch settings
# Spaces will automatically handle server_name and port
app.launch(
show_error=True
)
except Exception as e:
print(f"Error launching app: {e}")
traceback.print_exc()
raise