Spaces:
Sleeping
Sleeping
File size: 11,689 Bytes
b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 c6beb41 b906dc7 66947ed b906dc7 66947ed b906dc7 c6beb41 b906dc7 c6beb41 80f4400 b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
"""
Sound Management System for EEG Motor Imagery Classification (Clean Transition Version)
-------------------------------------------------------------------------------
Handles sound mapping, layering, and music composition based on motor imagery predictions.
Supports seamless transition from building (layering) to DJ (effects) phase.
"""
import numpy as np
import soundfile as sf
from typing import Dict
from pathlib import Path
class AudioEffectsProcessor:
@staticmethod
def apply_fade_in_out(data: np.ndarray, samplerate: int, fade_duration: float = 0.5) -> np.ndarray:
fade_samples = int(fade_duration * samplerate)
data = np.copy(data)
if fade_samples > 0 and fade_samples * 2 < len(data):
fade_in_curve = np.linspace(0, 1, fade_samples)
fade_out_curve = np.linspace(1, 0, fade_samples)
data[:fade_samples] = data[:fade_samples] * fade_in_curve
data[-fade_samples:] = data[-fade_samples:] * fade_out_curve
return data
@staticmethod
def apply_high_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 800.0) -> np.ndarray:
from scipy import signal
nyquist = samplerate / 2
normalized_cutoff = cutoff / nyquist
b, a = signal.butter(4, normalized_cutoff, btype='high', analog=False)
return signal.filtfilt(b, a, data)
@staticmethod
def apply_low_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 1200.0) -> np.ndarray:
from scipy import signal
nyquist = samplerate / 2
normalized_cutoff = cutoff / nyquist
b, a = signal.butter(4, normalized_cutoff, btype='low', analog=False)
return signal.filtfilt(b, a, data)
@staticmethod
def apply_reverb(data: np.ndarray, samplerate: int, room_size: float = 0.5) -> np.ndarray:
delay_samples = int(0.08 * samplerate)
decay = 0.4 * room_size
reverb_data = np.copy(data)
for i in range(3):
delay = delay_samples * (i + 1)
if delay < len(data):
gain = decay ** (i + 1)
reverb_data[delay:] += data[:-delay] * gain
return 0.7 * data + 0.3 * reverb_data
@staticmethod
def apply_echo(data: np.ndarray, samplerate: int, delay_time: float = 0.3, feedback: float = 0.4) -> np.ndarray:
delay_samples = int(delay_time * samplerate)
echo_data = np.copy(data)
for i in range(delay_samples, len(data)):
echo_data[i] += feedback * echo_data[i - delay_samples]
return 0.7 * data + 0.3 * echo_data
@staticmethod
def apply_compressor(data: np.ndarray, samplerate: int, threshold: float = 0.2, ratio: float = 4.0) -> np.ndarray:
# Simple compressor: reduce gain above threshold
compressed = np.copy(data)
over_threshold = np.abs(compressed) > threshold
compressed[over_threshold] = np.sign(compressed[over_threshold]) * (threshold + (np.abs(compressed[over_threshold]) - threshold) / ratio)
return compressed
@staticmethod
def process_layer_with_effects(audio_data: np.ndarray, samplerate: int, movement: str, active_effects: Dict[str, bool]) -> np.ndarray:
processed_data = np.copy(audio_data)
effect_map = {
"left_hand": AudioEffectsProcessor.apply_fade_in_out, # Fade in/out
"right_hand": AudioEffectsProcessor.apply_low_pass_filter, # Low Pass
"left_leg": AudioEffectsProcessor.apply_compressor, # Compressor
"right_leg": AudioEffectsProcessor.apply_echo, # Echo (vocals)
}
effect_func = effect_map.get(movement)
if active_effects.get(movement, False) and effect_func:
if movement == "left_hand":
processed_data = effect_func(processed_data, samplerate, fade_duration=0.5)
else:
processed_data = effect_func(processed_data, samplerate)
return processed_data
class SoundManager:
def __init__(self, sound_dir: str = "sounds"):
self.available_sounds = [
"SoundHelix-Song-6_bass.wav",
"SoundHelix-Song-6_drums.wav",
"SoundHelix-Song-6_instruments.wav",
"SoundHelix-Song-6_vocals.wav"
]
self.sound_dir = Path(sound_dir)
self.current_cycle = 0
self.current_step = 0
self.cycle_complete = False
self.completed_cycles = 0
self.max_cycles = 2
self.composition_layers = {}
self.current_phase = "building"
self.active_effects = {m: False for m in ["left_hand", "right_hand", "left_leg", "right_leg"]}
self.active_movements = ["left_hand", "right_hand", "left_leg", "right_leg"]
self.current_movement_sequence = []
self.movements_completed = set()
self.active_layers: Dict[str, str] = {}
self.loaded_sounds = {}
self._generate_new_sequence()
self._load_sound_files()
# Provide mapping from movement to sound file name for compatibility
self.current_sound_mapping = {m: f for m, f in zip(self.active_movements, self.available_sounds)}
# Track DJ effect trigger counts for each movement
self.dj_effect_counters = {m: 0 for m in self.active_movements}
self.cycle_stats = {'total_cycles': 0, 'successful_classifications': 0, 'total_attempts': 0}
def _load_sound_files(self):
self.loaded_sounds = {}
for movement, filename in self.current_sound_mapping.items():
file_path = self.sound_dir / filename
if file_path.exists():
data, sample_rate = sf.read(str(file_path))
if len(data.shape) > 1:
data = np.mean(data, axis=1)
self.loaded_sounds[movement] = {'data': data, 'sample_rate': sample_rate, 'sound_file': str(file_path)}
def _generate_new_sequence(self):
# Fixed movement order and mapping
self.current_movement_sequence = ["left_hand", "right_hand", "left_leg", "right_leg"]
self.current_sound_mapping = {
"left_hand": "SoundHelix-Song-6_instruments.wav",
"right_hand": "SoundHelix-Song-6_bass.wav",
"left_leg": "SoundHelix-Song-6_drums.wav",
"right_leg": "SoundHelix-Song-6_vocals.wav"
}
self.movements_completed = set()
self.current_step = 0
self._load_sound_files()
def get_current_target_movement(self) -> str:
# Always process left_hand last in DJ mode
incomplete = [m for m in self.active_movements if m not in self.movements_completed]
if not incomplete:
return "cycle_complete"
# If in DJ mode, left_hand should be last
if getattr(self, 'current_phase', None) == 'dj_effects':
# Remove left_hand from incomplete unless it's the only one left
if 'left_hand' in incomplete and len(incomplete) > 1:
incomplete = [m for m in incomplete if m != 'left_hand']
import random
movement = random.choice(incomplete)
return movement
def process_classification(self, predicted_class: str, confidence: float, threshold: float = 0.7, force_add: bool = False) -> Dict:
result = {'sound_added': False, 'cycle_complete': False, 'audio_file': None}
# If force_add is True, allow adding sound for any valid movement not already completed
if force_add:
if (
confidence >= threshold and
predicted_class in self.loaded_sounds and
predicted_class not in self.composition_layers
):
sound_info = dict(self.loaded_sounds[predicted_class])
sound_info['confidence'] = confidence
self.composition_layers[predicted_class] = sound_info
self.movements_completed.add(predicted_class)
result['sound_added'] = True
else:
pass
else:
current_target = self.get_current_target_movement()
if (
predicted_class == current_target and
confidence >= threshold and
predicted_class in self.loaded_sounds and
predicted_class not in self.composition_layers
):
sound_info = dict(self.loaded_sounds[predicted_class])
sound_info['confidence'] = confidence
self.composition_layers[predicted_class] = sound_info
self.movements_completed.add(predicted_class)
result['sound_added'] = True
else:
pass
if len(self.movements_completed) >= len(self.active_movements):
result['cycle_complete'] = True
self.current_phase = "dj_effects"
return result
def start_new_cycle(self):
self.current_cycle += 1
self.current_step = 0
self.cycle_complete = False
self.cycle_stats['total_cycles'] += 1
self._generate_new_sequence()
self.composition_layers = {} # Clear layers for new cycle
self.movements_completed = set()
self.current_phase = "building"
self.active_layers = {}
def transition_to_dj_phase(self):
if len(self.composition_layers) >= len(self.active_movements):
self.current_phase = "dj_effects"
return True
return False
def toggle_dj_effect(self, movement: str, brief: bool = True, duration: float = 1.0) -> dict:
import threading
if self.current_phase != "dj_effects":
return {"effect_applied": False, "message": "Not in DJ effects phase"}
if movement not in self.active_effects:
return {"effect_applied": False, "message": f"Unknown movement: {movement}"}
# Only toggle effect at counts 1, 4, 8, ... (i.e., 1 and then every multiple of 4)
self.dj_effect_counters[movement] += 1
count = self.dj_effect_counters[movement]
if count != 1 and (count - 1) % 4 != 0:
return {"effect_applied": False, "message": f"Effect for {movement} only toggled at 1, 4, 8, ... (count={count})"}
# Toggle effect ON
self.active_effects[movement] = True
effect_status = "ON"
# Schedule effect OFF after duration if brief
def turn_off_effect():
self.active_effects[movement] = False
if brief:
timer = threading.Timer(duration, turn_off_effect)
timer.daemon = True
timer.start()
return {"effect_applied": True, "effect_name": movement, "effect_status": effect_status, "count": count}
def get_composition_info(self) -> Dict:
layers_by_cycle = {0: []}
for movement, layer_info in self.composition_layers.items():
confidence = layer_info.get('confidence', 0) if isinstance(layer_info, dict) else 0
layers_by_cycle[0].append({'movement': movement, 'confidence': confidence})
# Add DJ effect status for each movement
dj_effects_status = {m: self.active_effects.get(m, False) for m in self.active_movements}
return {'layers_by_cycle': layers_by_cycle, 'dj_effects_status': dj_effects_status}
def get_sound_mapping_options(self) -> Dict:
return {
'movements': self.active_movements,
'available_sounds': self.available_sounds,
'current_mapping': {m: self.loaded_sounds[m]['sound_file'] for m in self.loaded_sounds}
}
def get_all_layers(self):
return {m: info['sound_file'] for m, info in self.composition_layers.items() if 'sound_file' in info}
|