GuideFlow3D / demos /pipeline_fn.py
suvadityamuk's picture
chore: update font and image self-sim pipeline errors
fbb5505
import os
import os.path as osp
import gradio as gr
import spaces
import gc
import trimesh
from PIL import Image
import logging as log
from omegaconf import OmegaConf
import random
import numpy as np
import hashlib
import shutil
from typing import Optional
import torch
from torchvision import transforms
from pycg import vis, image
from pycg import render as pycg_render
import sys
sys.path.append('.')
from lib.util.render import BLENDER_PATH
from third_party.PartField.partfield.model_trainer_pvcnn_only_demo import Model
from lib.opt import appearance, self_similarity
from lib.util import generation, common, pointcloud
import third_party.TRELLIS.trellis.models as models
from demos.custom_utils import render_all_views
# Define project root
PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
# Example Data Mappings (Manual Sync with Generator/Demo)
APP_MESH_EXAMPLES = {
"B01DA8LC0A": "example_data/appearance_mesh/B01DA8LC0A.glb",
"B01DJH73Y6": "example_data/appearance_mesh/B01DJH73Y6.glb",
"B0728KSP33": "example_data/appearance_mesh/B0728KSP33.glb",
"B07B4YXNR8": "example_data/appearance_mesh/B07B4YXNR8.glb",
"B07QC84LP1": "example_data/appearance_mesh/B07QC84LP1.glb",
"B07QFRSC8M": "example_data/appearance_mesh/B07QFRSC8M_zup.glb",
"B082QC7YKR": "example_data/appearance_mesh/B082QC7YKR_zup.glb",
}
APP_MESH_ABS_TO_NAME = {
os.path.abspath(os.path.join(PROJECT_ROOT, v)): k
for k, v in APP_MESH_EXAMPLES.items()
}
# Set BLENDER_HOME for pycg if not set
if "BLENDER_HOME" not in os.environ:
if osp.exists(BLENDER_PATH):
os.environ["BLENDER_HOME"] = BLENDER_PATH
else:
os.environ["BLENDER_HOME"] = "blender"
log.getLogger().setLevel(log.INFO)
log.basicConfig(level=log.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
partfield_config = 'third_party/PartField/config.yaml'
partfield_cfg = OmegaConf.load(partfield_config)
# Helper to calc hash
def file_sha256(path: str, chunk_size: int = 1 << 20) -> str:
h = hashlib.sha256()
if not osp.exists(path): return "nocontent"
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(chunk_size), b""):
h.update(chunk)
return h.hexdigest()
# @spaces.GPU()
def init_partfield(obj_path):
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
partfield_model = Model(partfield_cfg, obj_path)
partfield_model = partfield_model.to(device)
ckpt = torch.load(partfield_cfg.continue_ckpt, map_location=device, weights_only=False)
state_dict = ckpt.get("state_dict", ckpt)
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
missing, unexpected = partfield_model.load_state_dict(state_dict, strict=False)
if missing:
print("[load_partfield_model] Missing keys:", missing)
if unexpected:
print("[load_partfield_model] Unexpected keys:", unexpected)
partfield_model.eval()
return partfield_model
@spaces.GPU
def partfield_pipeline_predict(obj_path, output_dir, uid_tag):
log.info(f"Extracting PartField feature planes for {uid_tag}...")
gr.Info(f"Extracting PartField feature planes for {uid_tag}...")
seed = int(partfield_cfg.seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
partfield_model = init_partfield(obj_path)
dataloader = partfield_model.predict_dataloader()
batch = next(iter(dataloader))
with torch.no_grad():
with torch.autocast(device_type="cuda", dtype=torch.float16):
batch = {
k: (v.to(device) if torch.is_tensor(v) else v)
for k, v in batch.items()
}
part_planes, _ = partfield_model.predict_step(batch, batch_idx=0)
os.makedirs(output_dir, exist_ok=True)
# Use the explicit uid_tag instead of the one from the model
partfield_save_path = f'{output_dir}/part_feat_{uid_tag}_batch_part_plane.npy'
print(f"SAVING PART FIELD TO: {partfield_save_path}")
np.save(partfield_save_path, part_planes)
del partfield_model
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return partfield_save_path
class GuideFlow3dPipeline:
def __init__(self):
self.cfg = None
def from_pretrained(self, config):
self.cfg = config
return self
@spaces.GPU
def preprocess(
self,
structure_mesh: str,
convert_yup_to_zup: bool,
output_dir: str,
) -> None:
log.info("Loading structure mesh...")
gr.Info("Loading structure mesh...")
if not structure_mesh.endswith('.glb'):
log.error("Meshes must be in .glb format")
return
current_struct_hash = file_sha256(structure_mesh)
cached_input_copy_path = osp.join(output_dir, "struct_mesh_input.glb")
cached_struct_hash = None
if osp.exists(cached_input_copy_path):
cached_struct_hash = file_sha256(cached_input_copy_path)
use_struct_cache = (cached_struct_hash == current_struct_hash)
print(
f"Use struct cache: {use_struct_cache}",
f"Current struct hash: {current_struct_hash}",
f"Cached input copy hash: {cached_struct_hash}",
f"Input Structure mesh: {structure_mesh}",
f"Checking Structure hash path at: {cached_input_copy_path}"
)
struct_mesh_zup_path = osp.join(output_dir, "struct_mesh_zup.glb")
if use_struct_cache and osp.exists(struct_mesh_zup_path):
log.info("Using cached structure mesh (z-up).")
struct_mesh = trimesh.load(struct_mesh_zup_path, force="mesh")
else:
# Cache miss or mismatch: Regenerate
log.info("Cache miss or mismatch. Regenerating structure mesh...")
# 1. Save the exact input copy for future hash checks
shutil.copy2(structure_mesh, cached_input_copy_path)
# Save hash file for folder scanning
with open(osp.join(output_dir, "struct_mesh.hash"), "w") as f:
f.write(current_struct_hash)
# 2. Process
struct_mesh = trimesh.load(structure_mesh, force='mesh')
if convert_yup_to_zup:
struct_mesh = pointcloud.convert_mesh_yup_to_zup(struct_mesh)
struct_mesh.export(struct_mesh_zup_path)
log.info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")
gr.Info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")
struct_render_dir = osp.join(output_dir, 'struct_renders')
common.ensure_dir(struct_render_dir)
struct_mesh_ply_path = osp.join(struct_render_dir, "mesh.ply")
struct_transforms_path = osp.join(struct_render_dir, "transforms.json")
if use_struct_cache and osp.exists(struct_mesh_ply_path) and osp.exists(struct_transforms_path):
log.info("Using cached structure renders.")
out_renderviews = sorted(
[
osp.join(struct_render_dir, f)
for f in os.listdir(struct_render_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
)
else:
out_renderviews = render_all_views(
struct_mesh_zup_path,
struct_render_dir,
num_views=self.cfg.num_views // 10,
num_workers=None
)
if not out_renderviews:
log.error("Structure rendering failed! Aborting pipeline.")
return None
voxel_dir = osp.join(output_dir, 'voxels')
common.ensure_dir(voxel_dir)
log.info("Voxelizing structure mesh...")
gr.Info("Voxelizing structure mesh...")
struct_voxels_path = osp.join(voxel_dir, "struct_voxels.ply")
if use_struct_cache and osp.exists(struct_voxels_path):
log.info("Using cached structure voxels.")
else:
pointcloud.voxelize_mesh(
struct_mesh_ply_path,
save_path=struct_voxels_path,
)
log.info("Extracting Structure Mesh PartField feature planes...")
gr.Info("Extracting Structure Mesh PartField feature planes...")
partfield_dir = osp.join(output_dir, 'partfield')
common.ensure_dir(partfield_dir)
existing = [
f for f in os.listdir(partfield_dir)
if f.startswith("part_feat_struct_mesh_zup") and f.endswith("_batch_part_plane.npy")
]
if use_struct_cache and existing:
partfield_save_path = osp.join(partfield_dir, existing[0])
log.info(f"Using cached Structure PartField at {partfield_save_path}")
else:
print("PREDICTING STRUCTURE PART FIELD...")
partfield_save_path = partfield_pipeline_predict(
struct_mesh_zup_path,
partfield_dir,
"struct_mesh_zup"
)
if not out_renderviews:
log.info("Structure rendering failed!")
gr.Warning("Structure rendering failed!")
return {
"struct_mesh": struct_mesh,
"render_out": out_renderviews,
"partfield_structure_predictions_save_path": partfield_save_path,
"voxel_dir": voxel_dir
}
@spaces.GPU(duration=120)
def run_appearance(
self,
structure_mesh: str,
convert_target_yup_to_zup: bool,
convert_appearance_yup_to_zup: bool,
output_dir: str,
appearance_mesh: str,
appearance_image: str,
) -> Optional[str]:
_ = self.preprocess(
structure_mesh=structure_mesh,
convert_yup_to_zup=convert_target_yup_to_zup,
output_dir=output_dir,
)
blender_cache_dir = osp.join(output_dir, "blender_cache")
os.makedirs(blender_cache_dir, exist_ok=True)
os.environ["XDG_CACHE_HOME"] = blender_cache_dir
log.info("Running appearance-guided optimization...")
gr.Info("Running appearance-guided optimization...")
# Load appearance mesh
log.info("Loading appearance mesh...")
gr.Info("Loading appearance mesh...")
if not appearance_mesh.endswith('.glb'):
log.error("Meshes must be in .glb format")
return None
if not osp.exists(appearance_mesh):
log.error(f"Appearance mesh not found: {appearance_mesh}")
return None
# --- HYDRATE FROM CACHE IF EXAMPLE ---
abs_app_mesh = os.path.abspath(appearance_mesh)
if abs_app_mesh in APP_MESH_ABS_TO_NAME:
example_name = APP_MESH_ABS_TO_NAME[abs_app_mesh]
cache_src = os.path.join(PROJECT_ROOT, "all_outputs", example_name)
if os.path.exists(cache_src):
log.info(f"Hydrating appearance data from cache: {example_name}")
# Copy key folders/files if they don't match current input
# We force copy to ensure we have the correct appearance data in this folder
# 1. App Renders
src_renders = os.path.join(cache_src, "app_renders")
dst_renders = os.path.join(output_dir, "app_renders")
if os.path.exists(src_renders):
shutil.copytree(src_renders, dst_renders, dirs_exist_ok=True)
# 2. Voxels (Merge)
src_voxels = os.path.join(cache_src, "voxels")
dst_voxels = os.path.join(output_dir, "voxels")
if os.path.exists(src_voxels):
shutil.copytree(src_voxels, dst_voxels, dirs_exist_ok=True)
# 3. Features
src_features = os.path.join(cache_src, "features")
dst_features = os.path.join(output_dir, "features")
if os.path.exists(src_features):
shutil.copytree(src_features, dst_features, dirs_exist_ok=True)
# 4. Latents
src_latents = os.path.join(cache_src, "latents")
dst_latents = os.path.join(output_dir, "latents")
if os.path.exists(src_latents):
shutil.copytree(src_latents, dst_latents, dirs_exist_ok=True)
# 5. Partfield (App only ideally, but merge is safe due to naming)
src_partfield = os.path.join(cache_src, "partfield")
dst_partfield = os.path.join(output_dir, "partfield")
if os.path.exists(src_partfield):
shutil.copytree(src_partfield, dst_partfield, dirs_exist_ok=True)
# 6. Input Copy (Tricks the hash check below)
src_input = os.path.join(cache_src, "app_mesh_input.glb")
if os.path.exists(src_input):
shutil.copy2(src_input, os.path.join(output_dir, "app_mesh_input.glb"))
# --- STRICT HASH CHECK START (APPEARANCE) ---
current_app_hash = file_sha256(appearance_mesh)
# Similar strategy: verify against a saved copy of the input
cached_app_input_path = osp.join(output_dir, "app_mesh_input.glb")
cached_app_hash = None
if osp.exists(cached_app_input_path):
cached_app_hash = file_sha256(cached_app_input_path)
use_app_cache = (cached_app_hash == current_app_hash)
print(f"Current app hash: {current_app_hash}")
print(f"Cached app input hash: {cached_app_hash}")
print(f"Use app cache: {use_app_cache}")
app_mesh_path = osp.join(output_dir, "app_mesh.glb")
app_mesh_zup_path = osp.join(output_dir, "app_mesh_zup.glb")
if use_app_cache and osp.exists(app_mesh_zup_path):
log.info("Using cached appearance mesh (z-up).")
app_mesh = trimesh.load(app_mesh_zup_path, force="mesh")
else:
# Cache miss: Save input copy and process
shutil.copy2(appearance_mesh, cached_app_input_path)
# Save hash file
with open(osp.join(output_dir, "app_mesh.hash"), "w") as f:
f.write(current_app_hash)
app_mesh = trimesh.load(appearance_mesh, force="mesh")
app_mesh.export(app_mesh_path)
if convert_appearance_yup_to_zup:
app_mesh = pointcloud.convert_mesh_yup_to_zup(app_mesh)
app_mesh.export(app_mesh_zup_path)
# Load appearance image
log.info("Loading appearance image...")
gr.Info("Loading appearance image...")
if appearance_image:
app_image = Image.open(appearance_image).convert('RGB')
app_image.save(osp.join(output_dir, 'app_image.png'))
else:
# If cached, app_image.png should exist
if not osp.exists(osp.join(output_dir, 'app_image.png')):
mesh = vis.from_file(osp.join(output_dir, 'app_mesh.glb'), load_obj_textures=True)
mesh.paint_uniform_color([0.5, 0.5, 0.5])
scene = pycg_render.Scene(up_axis='+Y')
scene.add_object(mesh)
scene.quick_camera(w=512, h=512, pitch_angle=30, plane_angle=-45.0, fov=40)
pycg_render.ThemeDiffuseShadow(None, sun_tilt_right=0.0, sun_tilt_back=0.0, sun_angle=60.0).apply_to(scene)
rendering = scene.render_blender(quality=512)
rendering = image.alpha_compositing(rendering, image.solid(rendering.shape[1], rendering.shape[0]))
image.write(osp.join(output_dir, 'app_image.png'), rendering)
# --- CHECK FOR EXISTING FEATURES TO SKIP RENDERING ---
features_dir = osp.join(output_dir, "features", self.cfg.feature_name)
has_dinov2_features = osp.exists(features_dir) and len(os.listdir(features_dir)) > 0
app_render_dir = osp.join(output_dir, 'app_renders')
common.ensure_dir(app_render_dir)
app_mesh_ply_path = osp.join(app_render_dir, "mesh.ply")
app_transforms_path = osp.join(app_render_dir, "transforms.json")
if has_dinov2_features:
log.info("DinoV2 features found. Skipping appearance rendering.")
gr.Info("DinoV2 features found. Skipping appearance rendering.")
# Ensure mesh.ply exists for voxelization if it wasn't generated by rendering
if not osp.exists(app_mesh_ply_path) and 'app_mesh' in locals():
app_mesh.export(app_mesh_ply_path)
else:
# Render views for DinoV2 feature extraction
log.info(f"Rendering appearance mesh for {self.cfg.num_views} views...")
gr.Info(f"Rendering appearance mesh for {self.cfg.num_views} views...")
if use_app_cache and osp.exists(app_mesh_ply_path) and osp.exists(app_transforms_path):
log.info("Using cached appearance renders.")
out_renderviews = sorted(
[
osp.join(app_render_dir, f)
for f in os.listdir(app_render_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
)
else:
out_renderviews = render_all_views(
app_mesh_zup_path,
app_render_dir,
num_views=self.cfg.num_views,
num_workers=None
)
if not out_renderviews:
log.info("Appearance rendering failed!")
gr.Warning("Appearance rendering failed!")
return None
# Voxelise mesh
log.info("Voxelizing appearance mesh...")
gr.Info("Voxelizing appearance mesh...")
app_voxel_dir = osp.join(output_dir, "voxels")
common.ensure_dir(app_voxel_dir)
app_voxels_path = osp.join(app_voxel_dir, "app_voxels.ply")
if use_app_cache and osp.exists(app_voxels_path):
log.info("Using cached appearance voxels.")
else:
pointcloud.voxelize_mesh(
app_mesh_ply_path,
save_path=app_voxels_path,
)
# Extract DinoV2 Features
log.info("Extracting DinoV2 features...")
gr.Info("Extracting DinoV2 features...")
# features_dir already defined above
common.ensure_dir(features_dir)
if has_dinov2_features or (use_app_cache and os.listdir(features_dir)):
log.info("Using cached DINOv2 features.")
else:
log.info("Extracting DinoV2 features...")
gr.Info("Extracting DinoV2 features...")
dinov2_model = torch.hub.load(self.cfg.dinov2_repo, self.cfg.feature_name)
dinov2_model.eval().cuda()
transform = transforms.Compose([transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
generation.extract_feature(output_dir, dinov2_model, transform)
torch.cuda.empty_cache()
del dinov2_model
gc.collect()
# Extract SLAT Latent
log.info("Extracting SLAT latent...")
gr.Info("Extracting SLAT latent...")
latents_dir = osp.join(output_dir, "latents", self.cfg.latent_name)
common.ensure_dir(latents_dir)
if use_app_cache and os.listdir(latents_dir):
log.info("Using cached SLAT latent.")
else:
log.info("Extracting SLAT latent...")
gr.Info("Extracting SLAT latent...")
encoder = models.from_pretrained(self.cfg.enc_pretrained).eval().cuda()
generation.get_latent(output_dir, self.cfg.feature_name, self.cfg.latent_name, encoder)
del encoder
gc.collect()
# Extract PartField features for appearance mesh
log.info("Extracting Appearance Mesh PartField feature planes...")
gr.Info("Extracting Appearance Mesh PartField feature planes...")
app_partfield_dir = osp.join(output_dir, "partfield")
common.ensure_dir(app_partfield_dir)
existing_app_pf = [
f for f in os.listdir(app_partfield_dir)
if f.startswith("part_feat_app_mesh_zup") and f.endswith("_batch_part_plane.npy")
]
if use_app_cache and existing_app_pf:
appearance_partfield_save_path = osp.join(
app_partfield_dir, existing_app_pf[0]
)
log.info(
f"Using cached Appearance PartField at {appearance_partfield_save_path}"
)
else:
appearance_partfield_save_path = partfield_pipeline_predict(
app_mesh_zup_path,
app_partfield_dir,
"app_mesh_zup"
)
# Appearance Optimization
appearance.optimize_appearance(self.cfg, output_dir)
# Return the output mesh path
output_mesh_path = osp.join(output_dir, 'out_app.glb')
output_video_path = osp.join(output_dir, 'out_gaussian_app.mp4')
if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
return None, None
return output_mesh_path, output_video_path
@spaces.GPU(duration=120)
def run_self_similarity(
self,
structure_mesh: str,
convert_target_yup_to_zup: bool,
output_dir: str,
app_type: str,
appearance_text: Optional[str] = None,
appearance_image: Optional[str] = None,
) -> Optional[str]:
_ = self.preprocess(
structure_mesh=structure_mesh,
convert_yup_to_zup=convert_target_yup_to_zup,
output_dir=output_dir,
)
log.info("Running similarity-guided optimization...")
gr.Info("Running similarity-guided optimization...")
if app_type == 'image' and appearance_image:
img = Image.open(appearance_image).convert('RGB')
img.save(osp.join(output_dir, 'app_image.png'))
app = appearance_text if app_type == 'text' else appearance_image
# Self-Similarity Optimization
self_similarity.optimize_self_similarity(self.cfg, app, app_type, output_dir)
# Return the output mesh path
output_mesh_path = osp.join(output_dir, 'out_sim.glb')
output_video_path = osp.join(output_dir, 'out_gaussian_sim.mp4')
if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
return None, None
return output_mesh_path, output_video_path
def main():
pass