Time_RCD / models /SAND.py
Oliver Le
Initial commit
d03866e
import time
import os
import math
import pickle
import sys
from tqdm import tqdm
import pandas as pd
import numpy as np
from numpy.random import randint
from numpy.linalg import norm, eigh
from numpy.fft import fft, ifft
from tslearn.clustering import KShape
# from tslearn.cycc import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.metrics import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.utils import to_time_series_dataset,to_time_series
import stumpy
class SAND():
"""
Online and offline method that use a set of weighted subsequences (Theta) to identify anomalies.
The anomalies are identified by computing the distance of a given subsequence (the targeted
subsequence to analyze) to Theta
----------
subsequence_length : int : subsequence length to analyze
pattern_length : int (greater than pattern length): length of the subsequences in Theta
k : int (greater than 1) : number of subsequences in Theta
online : Boolean, Compute the analysis online or offline
- Online: run per batch the model update and the computation of the score
(requires the set alpha, init_length, and batch_size)
- Offline: run the model for one unique batch
alpha : float ([0,1]) : update rate (used in Online mode only)
init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
"""
def __init__(self,pattern_length,subsequence_length,k=6):
# Configuration parameter
self.current_time = 0
self.mean = -1
self.std = -1
# algorithm parameter
self.k = k
self.subsequence_length = subsequence_length
self.pattern_length = pattern_length
# real time evolving storage
self.clusters = []
self.new_clusters_dist = []
self.nm_current_weight = []
self.S = []
self.clusters_subseqs = []
"""
Build the model and compute the anoamly score
----------
X : np.array or List, the time series to analyse
online : Boolean, Compute the analysis online or offline
- Online: run per batch the model update and the computation of the score
(requires the set alpha, init_length, and batch_size)
- Offline: run the model for one unique batch
alpha : float ([0,1]) : update rate (used in Online mode only)
init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
overlapping rate (smaller than len(X)//2 and batch_size//2) : Number points seperating subsequences in the time series.
"""
def fit(self,X, y=None, online=False, alpha=None, init_length=None, batch_size=None, overlaping_rate=10, verbose=True):
# Take subsequence every 'overlaping_rate' points
# Change it to 1 for completely overlapping subsequences
# Change it to 'subsequence_length' for non-overlapping subsequences
# Change it to 'subsequence_length//4' for non-trivial matching subsequences
self.overlaping_rate = overlaping_rate
self.ts = list(X)
self.decision_scores_ = []
if online:
if (alpha is None) or (init_length is None) or (batch_size is None):
print("You must specify a value for alpha, init_length, and batch_size")
return None
self.alpha = alpha
self.init_length = init_length
self.batch_size = batch_size
if verbose:
print(self.current_time,end='-->')
self._initialize()
self._set_normal_model()
self.decision_scores_ = self._run(self.ts[:min(len(self.ts),self.current_time)])
while self.current_time < len(self.ts)-self.subsequence_length:
if verbose:
print(self.current_time,end='-->')
self._run_next_batch()
self._set_normal_model()
if self.current_time < len(self.ts)-self.subsequence_length:
self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:min(len(self.ts),self.current_time)])
else:
self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:])
if verbose:
print("[STOP]: score length {}".format(len(self.decision_scores_)))
else:
self.init_length = len(X)
self.alpha = 0.5
self.batch_size = 0
self._initialize()
self._set_normal_model()
self.decision_scores_ = self._run(self.ts)
self.decision_scores_ = np.array(self.decision_scores_)
# Computation of the anomaly score
def _run(self,ts):
all_join = []
all_activated_weighted = []
if len(self.nm_current_weight) != len(self.weights):
self.nm_current_weight = self.nm_current_weight + self.weights[len(self.nm_current_weight):]
for index_name in range(len(self.clusters)):
if self.nm_current_weight[index_name]> 0:
join = stumpy.stump(ts,self.pattern_length,self.clusters[index_name][0],ignore_trivial = False)[:,0]
join = np.array(join)
join = np.nan_to_num(join)
all_join.append(join)
join = [0]*len(all_join[0])
for sub_join,scores_sub_join,scores_sub_join_old,t_decay in zip(all_join,self.weights,self.nm_current_weight,self.time_decay):
new_w = float(scores_sub_join)/float(1+max(0,t_decay-self.batch_size))
update_w = float(1-self.alpha)*float(scores_sub_join_old) + float(self.alpha)*float(new_w)
join = [float(j) + float(sub_j)*update_w for j,sub_j in zip(list(join),list(sub_join))]
all_activated_weighted.append(update_w)
join = join + [join[-1]]*(self.pattern_length-1)
join = np.array(join)/np.sum(all_activated_weighted)
join = self._running_mean(join,self.pattern_length)
join = [join[0]]*(self.pattern_length-1) + list(join)
self.nm_current_weight = all_activated_weighted
if self.mean == -1:
self.mean = np.mean(join)
self.std = np.std(join)
else:
self.mean = (1-self.alpha)*self.mean + self.alpha*np.mean(join)
self.std = (1-self.alpha)*self.std + self.alpha*np.std(join)
join = (np.array(join) - self.mean)/self.std
return list(np.nan_to_num(join))
# MAIN METHODS:
# - Initialization
# - Theta update for next batch
# - Score computaiton
# Initialization of the model
def _initialize(self):
cluster_subseqs,clusters = self._kshape_subsequence(initialization=True)
all_mean_dist = []
for i,(cluster,cluster_subseq) in enumerate(zip(clusters,cluster_subseqs)):
self._set_initial_S(cluster_subseq,i,cluster[0])
all_mean_dist.append(self._compute_mean_dist(cluster[0],cluster[1]))
self.clusters = clusters
self.new_clusters_dist = all_mean_dist
self.current_time = self.init_length
# Model update for next batch
def _run_next_batch(self):
# Run K-Shape algorithm on the subsequences of the current batch
cluster_subseqs,clusters = self._kshape_subsequence(initialization=False)
#self.new_clusters_subseqs = cluster_subseqs
self.new_clusters_to_merge = clusters
to_add = [[] for i in range(len(self.clusters))]
new_c = []
# Finding the clusters that match exisiting clusters
# - Storing in to_add all the clusters that have to be merged with the existing clusters
# - Storing in new_c tyhe new clusters to be added.
for cluster,cluster_subseq in zip(clusters,cluster_subseqs):
min_dist = np.inf
tmp_index = -1
for index_o,origin_cluster in enumerate(self.clusters):
new_dist = self._sbd(origin_cluster[0],cluster[0])[0]
if min_dist > new_dist:
min_dist = new_dist
tmp_index = index_o
if tmp_index != -1:
if min_dist < self.new_clusters_dist[tmp_index]:
to_add[tmp_index].append((cluster,cluster_subseq))
else:
new_c.append((cluster,cluster_subseq))
self.to_add = to_add
self.new_c = new_c
new_clusters = []
all_mean_dist = []
# Merging existing clusters with new clusters
for i,(cur_c,t_a) in enumerate(zip(self.clusters,to_add)):
# Check if new subsequences to add
if len(t_a) > 0:
all_index = cur_c[1]
all_sub_to_add = []
for t_a_s in t_a:
all_index += t_a_s[0][1]
all_sub_to_add += t_a_s[1]
# Updating the centroid shape
new_centroid,_ = self._extract_shape_stream(all_sub_to_add,i,cur_c[0],initial=False)
new_clusters.append((self._clean_cluster_tslearn(new_centroid),all_index))
# Updating the intra cluster distance
dist_to_add = self._compute_mean_dist(cur_c[0],all_index)
ratio = float(len(cur_c[1]))/float(len(cur_c[1]) + len(all_index))
all_mean_dist.append( (ratio) * self.new_clusters_dist[i] + (1.0 - ratio) * dist_to_add )
# If no new subsequences to add, copy the old cluster
else:
new_clusters.append(cur_c)
all_mean_dist.append(self.new_clusters_dist[i])
# Adding new clusters
for i,t_a in enumerate(new_c):
self._set_initial_S(t_a[1],len(self.clusters) + i,t_a[0][0])
new_clusters.append((t_a[0][0],t_a[0][1]))
all_mean_dist.append(self._compute_mean_dist(t_a[0][0],t_a[0][1]))
self.clusters = new_clusters
self.new_clusters_dist = all_mean_dist
self.current_time = self.current_time + self.batch_size
# SBD distance
def _sbd(self,x, y):
ncc = self._ncc_c(x, y)
idx = ncc.argmax()
dist = 1 - ncc[idx]
return dist, None
# Core clustering computation unit
def _kshape_subsequence(self,initialization=True):
all_subsequences = []
idxs = []
if initialization:
nb_subsequence = self.init_length
else:
nb_subsequence = self.batch_size
for i in range(self.current_time,min(self.current_time + nb_subsequence,len(self.ts)-self.subsequence_length),self.overlaping_rate):
all_subsequences.append(self.ts[i:i+self.subsequence_length])
idxs.append(i)
ks = KShape(n_clusters=self.k,verbose=False)
list_label = ks.fit_predict(np.array(all_subsequences))
cluster_subseq = [[] for i in range(self.k)]
cluster_idx = [[] for i in range(self.k)]
for lbl,idx in zip(list_label,idxs):
cluster_idx[lbl].append(idx)
cluster_subseq[lbl].append(self.ts[idx:idx+self.subsequence_length])
# safety check
new_cluster_subseq = []
clusters = []
for i in range(self.k):
if len(cluster_subseq[i]) > 0:
new_cluster_subseq.append(cluster_subseq[i])
clusters.append((self._clean_cluster_tslearn(ks.cluster_centers_[i]),cluster_idx[i]))
return new_cluster_subseq,clusters
# Model elements update
def _set_normal_model(self):
Frequency = []
Centrality = []
Time_decay = []
for i,nm in enumerate(self.clusters):
Frequency.append(float(len(nm[1])))
Time_decay.append(float(self.current_time)-float(nm[1][-1]))
dist_nms = 0
for j,nm_t in enumerate(self.clusters):
if j != i:
dist_nms += self._sbd(nm[0],nm_t[0])[0]
Centrality.append(dist_nms)
Frequency = list((np.array(Frequency) - min(Frequency))/(max(Frequency) - min(Frequency)+0.0000001)+1)
Centrality = list((np.array(Centrality) - min(Centrality))/(max(Centrality) - min(Centrality)+0.0000001)+1)
weights = []
for f,c,t in zip(Frequency,Centrality,Time_decay):
weights.append(float(f)**2/float(c))
self.weights = weights
self.time_decay = Time_decay
# Setting in memory the matrix S
def _set_initial_S(self,X,idx,cluster_centers):
X = to_time_series_dataset(X)
cluster_centers = to_time_series(cluster_centers)
sz = X.shape[1]
Xp = y_shifted_sbd_vec(cluster_centers, X,
norm_ref=-1,
norms_dataset=np.linalg.norm(X, axis=(1, 2)))
S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])
self.S.append(S)
# Computation of the updated centroid
def _extract_shape_stream(self,X,idx,cluster_centers,initial=True):
X = to_time_series_dataset(X)
cluster_centers = to_time_series(cluster_centers)
sz = X.shape[1]
Xp = y_shifted_sbd_vec(cluster_centers, X,
norm_ref=-1,
norms_dataset=np.linalg.norm(X, axis=(1, 2)))
S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])
if not initial:
S = S + self.S[idx]
self.S[idx] = S
Q = np.eye(sz) - np.ones((sz, sz)) / sz
M = np.dot(Q.T, np.dot(S, Q))
_, vec = np.linalg.eigh(M)
mu_k = vec[:, -1].reshape((sz, 1))
dist_plus_mu = np.sum(np.linalg.norm(Xp - mu_k, axis=(1, 2)))
dist_minus_mu = np.sum(np.linalg.norm(Xp + mu_k, axis=(1, 2)))
if dist_minus_mu < dist_plus_mu:
mu_k *= -1
return self._zscore(mu_k, ddof=1),S
# Reset value of a cluster
def _clean_cluster_tslearn(self,cluster):
return np.array([val[0] for val in cluster])
# Compute mean distance of a element in a cluster
def _compute_mean_dist(self,cluster,all_index):
dist_all = []
for i in all_index:
dist_all.append(self._sbd(self.ts[i:i+self.subsequence_length],cluster)[0])
return np.mean(dist_all)
def _running_mean(self,x,N):
return (np.cumsum(np.insert(x,0,0))[N:] - np.cumsum(np.insert(x,0,0))[:-N])/N
def _ncc_c(self,x, y):
den = np.array(norm(x) * norm(y))
den[den == 0] = np.inf
x_len = len(x)
fft_size = 1 << (2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / den
def _zscore(self,a, axis=0, ddof=0):
a = np.asanyarray(a)
mns = a.mean(axis=axis)
sstd = a.std(axis=axis, ddof=ddof)
if axis and mns.ndim < a.ndim:
res = ((a - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd, axis=axis))
else:
res = (a - mns) / sstd
return np.nan_to_num(res)