graphics-llm / src /vanna.py
remdms's picture
Add Vanna
e6c7182
raw
history blame
11.5 kB
import re
import os
from vanna import Agent, AgentConfig
from vanna.core.registry import ToolRegistry
from vanna.core.user import UserResolver, User, RequestContext
from vanna.tools import RunSqlTool
from vanna.tools.agent_memory import SaveQuestionToolArgsTool, SearchSavedCorrectToolUsesTool
from vanna.integrations.postgres import PostgresRunner
from vanna.integrations.local.agent_memory import DemoAgentMemory
from .vanna_huggingface_llm_service import VannaHuggingFaceLlmService
from typing import List, Dict, Any, Optional
from vanna.core.system_prompt import SystemPromptBuilder
from vanna.core.registry import ToolSchema
from datetime import datetime
class CustomSQLSystemPromptBuilder(SystemPromptBuilder):
"""Complete system prompt builder for Vanna SQL assistant v2."""
VERSION = "2.2.0"
def __init__(self, company_name: str = "CoJournalist", sql_runner: Optional[PostgresRunner] = None):
self.company_name = company_name
self.sql_runner = sql_runner
async def build_system_prompt(
self,
user: User,
tool_schemas: List[ToolSchema],
context: Optional[Dict[str, Any]] = None
) -> str:
today = datetime.now().strftime("%Y-%m-%d")
username = getattr(user, "username", user.id)
# ======================
# BASE PROMPT
# ======================
prompt = f"[System Prompt v{self.VERSION}]\n\n"
prompt += f"You are an expert SQL assistant for the company {self.company_name}.\n"
prompt += f"Date: {today}\nUser: {username}\nGroups: {', '.join(user.group_memberships)}\n\n"
prompt += (
"Your role: generate correct and efficient SQL queries from natural language.\n"
"You always respond in **raw CSV format**, with no explanation or extra text.\n"
"You have full access to all tables and relationships described in the schema.\n"
)
# ======================
# SQL DIRECTIVES
# ======================
prompt += (
"\n## SQL Directives\n"
"- Always use table aliases in JOINs\n"
"- Never use SELECT *\n"
"- Prefer window functions over subqueries when possible\n"
"- Always include a LIMIT for exploratory queries\n"
"- Exclude posts where provider = 'SND'\n"
"- Exclude posts where type = 'resource'\n"
"- Exclude posts where type = 'insight'\n"
"- Format dates and numbers for readability\n"
)
# ======================
# DATABASE SCHEMA
# ======================
if context and "database_schema" in context:
prompt += "\n## Database Schema\n"
prompt += context["database_schema"]
else:
prompt += (
"\n## Database Schema\n"
"Tables:\n"
"- posts (id, title, source_url, author, published_date, image_url, type, provider_id, created_at, updated_at)\n"
"- providers (id, name)\n"
"- provider_attributes (id, provider_id, type, name)\n"
"- post_provider_attributes (post_id, attribute_id)\n"
"- tags (id, name)\n"
"- post_tags (post_id, tag_id, weight)\n"
"\nRelationships:\n"
" - posts.provider_id β†’ providers.id\n"
" - post_provider_attributes.post_id β†’ posts.id\n"
" - post_provider_attributes.attribute_id β†’ provider_attributes.id\n"
" - provider_attributes.provider_id β†’ providers.id\n"
" - post_tags.post_id β†’ posts.id\n"
" - post_tags.tag_id β†’ tags.id\n"
)
# ======================
# SEMANTIC INFORMATION
# ======================
prompt += (
"\n## Semantic Information\n"
"- `posts.title`: title of the content (often descriptive, may contain keywords).\n"
"- `posts.source_url`: external link to the article or resource.\n"
"- `posts.author`: author, journalist, or organization name (e.g., 'The New York Times').\n"
"- `posts.published_date`: publication date.\n"
"- `posts.type`: content type ENUM ('spotlight', 'resource', 'insight').\n"
"- `providers.name`: name of the publishing organization (e.g., 'Nuanced', 'SND').\n"
"- `tags.name`: thematic keyword or topic (e.g., '3D', 'AI', 'Design').\n"
"- `post_tags.weight`: relevance score between a post and a tag.\n"
)
# ======================
# BUSINESS LOGIC
# ======================
prompt += (
"\n## Business Logic\n"
"- Providers named 'SND' must always be excluded.\n"
"- A query mentioning an organization (e.g., 'New York Times') should search both `posts.author` and `providers.name`.\n"
"- By default, only posts with `type = 'spotlight'` are returned.\n"
"- Posts of type `resource` or `insight` are excluded unless explicitly requested.\n"
"- Tags link posts to specific themes or disciplines.\n"
"- A single post may have multiple tags, awards, or categories.\n"
"- If the user mentions a year (e.g., 'in 2021'), filter with `EXTRACT(YEAR FROM published_date) = 2021`.\n"
"- If the user says 'recently', filter posts from the last 90 days.\n"
"- Always limit exploratory results to 9 rows.\n"
)
# ======================
# AVAILABLE TOOLS
# ======================
if tool_schemas:
prompt += "\n## Available Tools\n"
for tool in tool_schemas:
prompt += f"- {tool.name}: {getattr(tool, 'description', 'No description')}\n"
prompt += f" Parameters: {getattr(tool, 'parameters', 'N/A')}\n"
# ======================
# MEMORY SYSTEM
# ======================
tool_names = [t.name for t in tool_schemas]
has_search = "search_saved_correct_tool_uses" in tool_names
has_save = "save_question_tool_args" in tool_names
if has_search or has_save:
prompt += "\n## Memory System\n"
if has_search:
prompt += "- Use `search_saved_correct_tool_uses` to detect past patterns.\n"
if has_save:
prompt += "- Use `save_question_tool_args` to store successful pairs.\n"
# ======================
# EXAMPLES
# ======================
prompt += (
"\n## Example Interactions\n"
"User: 'Show me posts related to 3D'\n"
"Assistant: [call run_sql with \"SELECT p.id, p.title, p.source_url, p.author, p.published_date, p.image_url, p.type "
"FROM posts p "
"JOIN post_tags pt ON p.id = pt.post_id "
"JOIN tags t ON pt.tag_id = t.id "
"JOIN providers pr ON p.provider_id = pr.id "
"WHERE t.name ILIKE '%3D%' AND pr.name != 'SND' AND p.type = 'spotlight' "
"LIMIT 9;\"]\n"
"\nUser: 'Show me posts from The New York Times'\n"
"Assistant: [call run_sql with \"SELECT p.id, p.title, p.source_url, p.author, p.published_date, p.image_url, p.type "
"FROM posts p "
"LEFT JOIN providers pr ON pr.id = p.provider_id "
"WHERE LOWER(p.author) LIKE '%new york times%' OR LOWER(pr.name) LIKE '%new york times%' "
"AND pr.name != 'SND' AND p.type = 'spotlight' "
"LIMIT 9;\"]\n"
)
# ======================
# FINAL INSTRUCTIONS
# ======================
prompt += (
"\nIMPORTANT:\n"
"- Always exclude posts with provider = 'SND'.\n"
"- Always exclude posts with type = 'resource' or 'insight'.\n"
"- Always return **only the raw CSV result** β€” no explanations, no JSON, no commentary.\n"
"- Stop tool execution once the query result is obtained.\n"
)
return prompt
class SimpleUserResolver(UserResolver):
async def resolve_user(self, request_context: RequestContext) -> User:
user_email = request_context.get_cookie('vanna_email') or 'guest@example.com'
group = 'admin' if user_email == 'admin@example.com' else 'user'
return User(id=user_email, email=user_email, group_memberships=[group])
class VannaComponent:
def __init__(
self,
hf_model: str,
hf_token: str,
hf_provider: str,
connection_string: str,
):
llm = VannaHuggingFaceLlmService(model=hf_model, token=hf_token, provider=hf_provider)
self.sql_runner = PostgresRunner(connection_string=connection_string)
db_tool = RunSqlTool(sql_runner=self.sql_runner)
agent_memory = DemoAgentMemory(max_items=1000)
save_memory_tool = SaveQuestionToolArgsTool(agent_memory)
search_memory_tool = SearchSavedCorrectToolUsesTool(agent_memory)
self.user_resolver = SimpleUserResolver()
tools = ToolRegistry()
tools.register_local_tool(db_tool, access_groups=['admin', 'user'])
tools.register_local_tool(save_memory_tool, access_groups=['admin'])
tools.register_local_tool(search_memory_tool, access_groups=['admin', 'user'])
self.agent = Agent(
llm_service=llm,
tool_registry=tools,
user_resolver=self.user_resolver,
system_prompt_builder=CustomSQLSystemPromptBuilder("CoJournalist", self.sql_runner),
config=AgentConfig(stream_responses=False, max_tool_iterations=1)
)
async def ask(self, prompt_for_llm: str):
ctx = RequestContext()
print(f"πŸ™‹ Prompt sent to LLM: {prompt_for_llm}")
final_text = ""
seen_texts = set()
async for component in self.agent.send_message(request_context=ctx, message=prompt_for_llm):
simple = getattr(component, "simple_component", None)
text = getattr(simple, "text", "") if simple else ""
if text and text not in seen_texts:
print(f"πŸ’¬ LLM says (part): {text[:200]}...")
final_text += text + "\n"
seen_texts.add(text)
sql_query = getattr(component, "sql", None)
if sql_query:
print(f"🧾 SQL Query Generated: {sql_query}")
metadata = getattr(component, "metadata", None)
if metadata:
print(f"πŸ“‹ Metadata: {metadata}")
component_type = getattr(component, "type", None)
if component_type:
print(f"πŸ”– Component Type: {component_type}")
match = re.search(r"query_results_[\w-]+\.csv", final_text)
if match:
filename = match.group(0)
folder = "513935c4d2db2d2d"
full_path = os.path.join(folder, filename)
if os.path.exists(full_path):
print(f"πŸ“‚ Reading result file: {full_path}")
with open(full_path, "r", encoding="utf-8") as f:
csv_data = f.read().strip()
print("πŸ€– Response sent to user (from file):", csv_data[:300])
return csv_data
else:
print(f"⚠️ File not found: {full_path}")
return final_text