DataEngEval / src /langchain_evaluator.py
uparekh01151's picture
Initial commit for DataEngEval
acd8e16
"""
LangChain + Custom Evaluator
Combines LangChain for model management with custom evaluation metrics.
"""
import os
import time
import pandas as pd
from typing import Dict, List, Any, Optional
from pathlib import Path
import duckdb
import sqlglot
from langchain_models import langchain_models_registry
from custom_evaluator import custom_evaluator, EvaluationResult
class LangChainEvaluator:
"""Integrated evaluator using LangChain and custom evaluation metrics."""
def __init__(self):
self.models_registry = langchain_models_registry
self.custom_evaluator = custom_evaluator
def load_dataset(self, dataset_name: str) -> Dict[str, Any]:
"""Load dataset configuration and data."""
dataset_path = Path(f"tasks/{dataset_name}")
if not dataset_path.exists():
raise ValueError(f"Dataset {dataset_name} not found")
# Load schema
schema_path = dataset_path / "schema.sql"
with open(schema_path, 'r') as f:
schema = f.read()
# Load cases
cases_path = dataset_path / "cases.yaml"
import yaml
with open(cases_path, 'r') as f:
cases = yaml.safe_load(f)
# Load data
loader_path = dataset_path / "loader.py"
db_path = f"{dataset_name}.duckdb"
# Create database if it doesn't exist
if not os.path.exists(db_path):
self._create_database(loader_path, db_path)
return {
'schema': schema,
'cases': cases.get('cases', []), # Extract the cases list from YAML
'db_path': db_path
}
def _create_database(self, loader_path: Path, db_path: str):
"""Create database using the loader script."""
try:
# Import and run the loader
import importlib.util
spec = importlib.util.spec_from_file_location("loader", loader_path)
loader_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(loader_module)
# Run the loader function
if hasattr(loader_module, 'load_data'):
loader_module.load_data(db_path)
else:
print(f"⚠️ No load_data function found in {loader_path}")
except Exception as e:
print(f"❌ Error creating database: {e}")
def load_prompt_template(self, dialect: str) -> str:
"""Load prompt template for the given dialect."""
template_path = f"prompts/template_{dialect}.txt"
if not os.path.exists(template_path):
# Fallback to generic template
template_path = "prompts/template_presto.txt"
with open(template_path, 'r') as f:
return f.read()
def evaluate_models(
self,
dataset_name: str,
dialect: str,
case_id: str,
model_names: List[str]
) -> List[EvaluationResult]:
"""Evaluate multiple models on a single case."""
# Load dataset
dataset = self.load_dataset(dataset_name)
# Find the case
case = None
for c in dataset['cases']:
if c['id'] == case_id:
case = c
break
if not case:
raise ValueError(f"Case {case_id} not found in dataset {dataset_name}")
# Load prompt template
prompt_template = self.load_prompt_template(dialect)
# Setup database connection
db_conn = duckdb.connect(dataset['db_path'])
results = []
for model_name in model_names:
print(f"🔍 Evaluating {model_name} on {dataset_name}/{case_id} ({dialect})")
# Get model configuration
model_config = self.models_registry.get_model_config(model_name)
if not model_config:
print(f"⚠️ Model {model_name} not found, skipping")
continue
try:
# Generate SQL using LangChain
raw_sql, generated_sql = self.models_registry.generate_sql(
model_config=model_config,
prompt_template=prompt_template,
schema=dataset['schema'],
question=case['question']
)
# Get reference SQL for the dialect
reference_sql = case['reference_sql'].get(dialect, case['reference_sql'].get('presto', ''))
print(f"📝 LLM Raw Output: {raw_sql[:100]}...")
print(f"📝 LLM Cleaned SQL: {generated_sql[:100]}...")
print(f"📝 Human Reference SQL: {reference_sql[:100]}...")
# Evaluate using custom evaluator
result = self.custom_evaluator.evaluate_sql(
model_name=model_name,
dataset=dataset_name,
case_id=case_id,
dialect=dialect,
question=case['question'],
raw_sql=raw_sql,
generated_sql=generated_sql,
reference_sql=reference_sql,
schema=dataset['schema'],
db_conn=db_conn
)
results.append(result)
# Calculate composite score
composite_score = (
result.correctness_exact * 0.3 +
result.result_match_f1 * 0.3 +
result.exec_success * 0.2 +
result.sql_quality * 0.1 +
result.semantic_similarity * 0.1
)
print(f"✅ {model_name}: Composite Score = {composite_score:.3f}")
except Exception as e:
print(f"❌ Error evaluating {model_name}: {e}")
continue
# Close database connection
db_conn.close()
return results
def evaluate_batch(
self,
dataset_name: str,
dialect: str,
case_ids: List[str],
model_names: List[str]
) -> List[EvaluationResult]:
"""Evaluate multiple models on multiple cases."""
all_results = []
for case_id in case_ids:
print(f"\n🎯 Evaluating case: {case_id}")
case_results = self.evaluate_models(
dataset_name=dataset_name,
dialect=dialect,
case_id=case_id,
model_names=model_names
)
all_results.extend(case_results)
return all_results
def get_leaderboard_data(self) -> pd.DataFrame:
"""Get current leaderboard data."""
leaderboard_path = "leaderboard.parquet"
if os.path.exists(leaderboard_path):
return pd.read_parquet(leaderboard_path)
else:
return pd.DataFrame()
def update_leaderboard(self, results: List[EvaluationResult]):
"""Update the leaderboard with new results."""
# Convert results to DataFrame
new_data = []
for result in results:
new_data.append({
'model_name': result.model_name,
'dataset_name': result.dataset,
'dialect': result.dialect,
'case_id': result.case_id,
'question': result.question,
'reference_sql': result.reference_sql,
'generated_sql': result.generated_sql,
'correctness_exact': result.correctness_exact,
'result_match_f1': result.result_match_f1,
'exec_success': result.exec_success,
'latency_ms': result.latency_ms,
'readability': result.readability,
'dialect_ok': result.dialect_ok,
'sql_quality': result.sql_quality,
'semantic_similarity': result.semantic_similarity,
'structural_similarity': result.structural_similarity,
'composite_score': result.composite_score,
'timestamp': str(pd.Timestamp.now())
})
new_df = pd.DataFrame(new_data)
# Load existing leaderboard
existing_df = self.get_leaderboard_data()
# Combine and save
if not existing_df.empty:
combined_df = pd.concat([existing_df, new_df], ignore_index=True)
else:
combined_df = new_df
# Ensure timestamp column is treated as string to avoid conversion issues
if 'timestamp' in combined_df.columns:
combined_df['timestamp'] = combined_df['timestamp'].astype(str)
combined_df.to_parquet("leaderboard.parquet", index=False)
print(f"📊 Leaderboard updated with {len(new_data)} new results")
def get_leaderboard_summary(self, top_n: int = 50) -> pd.DataFrame:
"""Get leaderboard summary with aggregated scores."""
df = self.get_leaderboard_data()
if df.empty:
return pd.DataFrame()
# Aggregate by model - handle missing RAGAS columns
agg_dict = {
'composite_score': ['mean', 'std', 'count'],
'correctness_exact': 'mean',
'result_match_f1': 'mean',
'exec_success': 'mean',
'latency_ms': 'mean'
}
# Add RAGAS columns if they exist
if 'sql_quality' in df.columns:
agg_dict['sql_quality'] = 'mean'
if 'semantic_similarity' in df.columns:
agg_dict['semantic_similarity'] = 'mean'
if 'structural_similarity' in df.columns:
agg_dict['structural_similarity'] = 'mean'
summary = df.groupby('model_name').agg(agg_dict).round(3)
# Flatten column names
summary.columns = ['_'.join(col).strip() for col in summary.columns]
# Sort by composite score
summary = summary.sort_values('composite_score_mean', ascending=False)
return summary.head(top_n)
def run_comprehensive_evaluation(
self,
dataset_name: str,
dialect: str,
model_names: List[str],
max_cases: Optional[int] = None
) -> List[EvaluationResult]:
"""Run comprehensive evaluation across all cases."""
# Load dataset
dataset = self.load_dataset(dataset_name)
# Get case IDs
case_ids = [case['id'] for case in dataset['cases']]
if max_cases:
case_ids = case_ids[:max_cases]
print(f"🚀 Starting comprehensive evaluation:")
print(f" Dataset: {dataset_name}")
print(f" Dialect: {dialect}")
print(f" Models: {', '.join(model_names)}")
print(f" Cases: {len(case_ids)}")
# Run evaluation
results = self.evaluate_batch(
dataset_name=dataset_name,
dialect=dialect,
case_ids=case_ids,
model_names=model_names
)
# Update leaderboard
self.update_leaderboard(results)
# Print summary
self._print_evaluation_summary(results)
return results
def _print_evaluation_summary(self, results: List[EvaluationResult]):
"""Print evaluation summary."""
if not results:
print("❌ No results to summarize")
return
# Group by model
model_results = {}
for result in results:
if result.model_name not in model_results:
model_results[result.model_name] = []
model_results[result.model_name].append(result)
print(f"\n📊 Evaluation Summary:")
print("=" * 60)
for model_name, model_result_list in model_results.items():
avg_composite = sum(r.composite_score for r in model_result_list) / len(model_result_list)
avg_correctness = sum(r.correctness_exact for r in model_result_list) / len(model_result_list)
avg_f1 = sum(r.result_match_f1 for r in model_result_list) / len(model_result_list)
avg_exec = sum(r.exec_success for r in model_result_list) / len(model_result_list)
avg_latency = sum(r.latency_ms for r in model_result_list) / len(model_result_list)
print(f"\n🤖 {model_name}:")
print(f" Composite Score: {avg_composite:.3f}")
print(f" Correctness: {avg_correctness:.3f}")
print(f" Result Match F1: {avg_f1:.3f}")
print(f" Execution Success: {avg_exec:.3f}")
print(f" Avg Latency: {avg_latency:.1f}ms")
print(f" Cases Evaluated: {len(model_result_list)}")
# Global instance
langchain_evaluator = LangChainEvaluator()