Spaces:
Sleeping
Sleeping
File size: 28,947 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
import os
import time
import json
from typing import Dict, Any, List
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import streamlit as st
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, regularizers
from ultralytics import YOLO
# Keras application imports
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input as vgg16_preprocess
from tensorflow.keras.applications.efficientnet import EfficientNetB0, preprocess_input as effnet_preprocess
# ------------------------------------------------------------
# GLOBAL CONFIG
# ------------------------------------------------------------
st.set_page_config(
page_title="SmartVision AI",
page_icon="π§ ",
layout="wide",
)
st.markdown(
"""
<h1 style='text-align:center;'>
π€β‘ <b>SmartVision AI</b> β‘π€
</h1>
<h3 style='text-align:center; margin-top:-10px;'>
ππ― Intelligent Multi-Class Object Recognition System π―π
</h3>
""",
unsafe_allow_html=True
)
st.markdown(
"<p style='text-align:center; color: gray;'>End-to-end computer vision pipeline on a COCO subset of 25 everyday object classes</p>",
unsafe_allow_html=True
)
st.divider()
from pathlib import Path
# Resolve repository root relative to this file (streamlit_app/app.py)
THIS_FILE = Path(__file__).resolve()
REPO_ROOT = THIS_FILE.parent # repo/
SAVED_MODELS_DIR = REPO_ROOT / "saved_models"
YOLO_RUNS_DIR = REPO_ROOT / "yolo_runs"
SMARTVISION_METRICS_DIR = REPO_ROOT / "smartvision_metrics"
SMARTVISION_DATASET_DIR = REPO_ROOT / "smartvision_dataset"
# Then turn constants into Path objects / strings
YOLO_WEIGHTS_PATH = str(YOLO_RUNS_DIR / "smartvision_yolov8s6 - Copy" / "weights" / "best.pt")
CLASSIFIER_MODEL_CONFIGS = {
"VGG16": {
"type": "vgg16",
"path": str(SAVED_MODELS_DIR / "vgg16_v2_stage2_best.h5"),
},
"ResNet50": {
"type": "resnet50",
"path": str(SAVED_MODELS_DIR / "resnet50_v2_stage2_best.weights.h5"),
},
"MobileNetV2": {
"type": "mobilenetv2",
"path": str(SAVED_MODELS_DIR / "mobilenetv2_v2_stage2_best.weights.h5"),
},
"EfficientNetB0": {
"type": "efficientnetb0",
"path": str(SAVED_MODELS_DIR / "efficientnetb0_stage2_best.weights.h5"),
},
}
CLASS_METRIC_PATHS = {
"VGG16": str(SMARTVISION_METRICS_DIR / "vgg16_v2_stage2" / "metrics.json"),
"ResNet50": str(SMARTVISION_METRICS_DIR / "resnet50_v2_stage2" / "metrics.json"),
"MobileNetV2": str(SMARTVISION_METRICS_DIR / "mobilenetv2_v2" / "metrics.json"),
"EfficientNetB0": str(SMARTVISION_METRICS_DIR / "efficientnetb0" / "metrics.json"),
}
YOLO_METRICS_JSON = str(REPO_ROOT / "yolo_metrics" / "yolov8s_metrics.json")
BASE_DIR = str(SMARTVISION_DATASET_DIR)
CLASS_DIR = str(SMARTVISION_DATASET_DIR / "classification")
DET_DIR = str(SMARTVISION_DATASET_DIR / "detection")
IMG_SIZE = (224, 224)
NUM_CLASSES = 25
CLASS_NAMES = [
"airplane", "bed", "bench", "bicycle", "bird", "bottle", "bowl",
"bus", "cake", "car", "cat", "chair", "couch", "cow", "cup", "dog",
"elephant", "horse", "motorcycle", "person", "pizza", "potted plant",
"stop sign", "traffic light", "truck"
]
assert len(CLASS_NAMES) == NUM_CLASSES
# ------------------------------------------------------------
# BUILDERS β MATCH TRAINING ARCHITECTURES
# ------------------------------------------------------------
# ---------- VGG16 v2 ----------
def build_vgg16_model_v2():
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.04),
layers.RandomZoom(0.1),
layers.RandomContrast(0.2),
layers.Lambda(lambda x: tf.image.random_brightness(x, max_delta=0.2)),
layers.Lambda(lambda x: tf.image.random_saturation(x, 0.8, 1.2)),
],
name="data_augmentation",
)
x = data_augmentation(inputs)
x = layers.Lambda(
lambda z: vgg16_preprocess(tf.cast(z, tf.float32)),
name="vgg16_preprocess",
)(x)
base_model = VGG16(
include_top=False,
weights="imagenet",
input_tensor=x,
)
x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(base_model.output)
x = layers.Dense(256, activation="relu", name="dense_256")(x)
x = layers.Dropout(0.5, name="dropout_0_5")(x)
outputs = layers.Dense(NUM_CLASSES, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="VGG16_smartvision_v2")
return model
# ---------- ResNet50 v2 ----------
def build_resnet50_model_v2():
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.04),
layers.RandomZoom(0.1),
layers.RandomContrast(0.15),
layers.Lambda(lambda x: tf.image.random_brightness(x, max_delta=0.15)),
layers.Lambda(lambda x: tf.image.random_saturation(x, 0.85, 1.15)),
],
name="data_augmentation",
)
x = data_augmentation(inputs)
x = layers.Lambda(
keras.applications.resnet50.preprocess_input,
name="resnet50_preprocess",
)(x)
base_model = keras.applications.ResNet50(
include_top=False,
weights="imagenet",
input_shape=(*IMG_SIZE, 3),
)
x = base_model(x)
x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(x)
x = layers.BatchNormalization(name="head_batchnorm")(x)
x = layers.Dropout(0.4, name="head_dropout")(x)
x = layers.Dense(256, activation="relu", name="head_dense")(x)
x = layers.BatchNormalization(name="head_batchnorm_2")(x)
x = layers.Dropout(0.5, name="head_dropout_2")(x)
outputs = layers.Dense(NUM_CLASSES, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="ResNet50_smartvision_v2")
return model
# ---------- MobileNetV2 v2 ----------
def build_mobilenetv2_model_v2():
"""
Same architecture as the MobileNetV2 v2 training script.
"""
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.04), # ~Β±15Β°
layers.RandomZoom(0.1),
layers.RandomContrast(0.15),
layers.Lambda(lambda x: tf.image.random_brightness(x, max_delta=0.15)),
layers.Lambda(lambda x: tf.image.random_saturation(x, 0.85, 1.15)),
],
name="data_augmentation",
)
x = data_augmentation(inputs)
x = layers.Lambda(
keras.applications.mobilenet_v2.preprocess_input,
name="mobilenetv2_preprocess",
)(x)
base_model = keras.applications.MobileNetV2(
include_top=False,
weights="imagenet",
input_shape=(*IMG_SIZE, 3),
)
x = base_model(x)
x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(x)
x = layers.BatchNormalization(name="head_batchnorm_1")(x)
x = layers.Dropout(0.4, name="head_dropout_1")(x)
x = layers.Dense(
256,
activation="relu",
kernel_regularizer=regularizers.l2(1e-4),
name="head_dense_1",
)(x)
x = layers.BatchNormalization(name="head_batchnorm_2")(x)
x = layers.Dropout(0.5, name="head_dropout_2")(x)
outputs = layers.Dense(NUM_CLASSES, activation="softmax", name="predictions")(x)
model = keras.Model(
inputs=inputs,
outputs=outputs,
name="MobileNetV2_smartvision_v2",
)
return model
# ---------- EfficientNetB0 ----------
def bright_jitter(x):
x_f32 = tf.cast(x, tf.float32)
x_f32 = tf.image.random_brightness(x_f32, max_delta=0.25)
return tf.cast(x_f32, x.dtype)
def sat_jitter(x):
x_f32 = tf.cast(x, tf.float32)
x_f32 = tf.image.random_saturation(x_f32, lower=0.7, upper=1.3)
return tf.cast(x_f32, x.dtype)
def build_efficientnetb0_model():
"""
Same architecture as EfficientNetB0 training script
(without the mixed precision policy setup, which belongs in training code).
"""
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.08),
layers.RandomZoom(0.15),
layers.RandomContrast(0.3),
layers.RandomTranslation(0.1, 0.1),
layers.Lambda(bright_jitter),
layers.Lambda(sat_jitter),
],
name="advanced_data_augmentation",
)
x = data_augmentation(inputs)
x = layers.Lambda(
lambda z: effnet_preprocess(tf.cast(z, tf.float32)),
name="effnet_preprocess",
)(x)
base_model = EfficientNetB0(
include_top=False,
weights="imagenet",
name="efficientnetb0",
)
x = base_model(x, training=False)
x = layers.GlobalAveragePooling2D(name="gap")(x)
x = layers.BatchNormalization(name="head_bn_1")(x)
x = layers.Dense(256, activation="relu", name="head_dense_1")(x)
x = layers.BatchNormalization(name="head_bn_2")(x)
x = layers.Dropout(0.4, name="head_dropout")(x)
outputs = layers.Dense(
NUM_CLASSES,
activation="softmax",
dtype="float32",
name="predictions",
)(x)
model = keras.Model(inputs, outputs, name="EfficientNetB0_smartvision")
return model
# ------------------------------------------------------------
# CACHED MODEL LOADERS
# ------------------------------------------------------------
@st.cache_resource(show_spinner=True)
def load_yolo_model() -> YOLO:
if not os.path.exists(YOLO_WEIGHTS_PATH):
raise FileNotFoundError(f"YOLO weights not found: {YOLO_WEIGHTS_PATH}")
model = YOLO(YOLO_WEIGHTS_PATH)
return model
@st.cache_resource(show_spinner=True)
def load_classification_models() -> Dict[str, keras.Model]:
"""
Build each architecture fresh, then TRY to load your trained weights.
If loading fails or path is None, the model is still returned
(ImageNet-pretrained backbone + random head), so all 4 are enabled.
"""
models: Dict[str, keras.Model] = {}
for name, cfg in CLASSIFIER_MODEL_CONFIGS.items():
model_type = cfg["type"]
path = cfg["path"]
# 1) Build the architecture
if model_type == "vgg16":
model = build_vgg16_model_v2()
elif model_type == "resnet50":
model = build_resnet50_model_v2()
elif model_type == "mobilenetv2":
model = build_mobilenetv2_model_v2()
elif model_type == "efficientnetb0":
model = build_efficientnetb0_model()
else:
continue
# 2) Try to load your training weights (if path is provided and file exists)
if path is not None and os.path.exists(path):
try:
model.load_weights(path)
except Exception as e:
st.sidebar.warning(
f"β οΈ Could not fully load weights for {name} from {path}: {e}\n"
" Using ImageNet-pretrained backbone + random head."
)
elif path is not None:
st.sidebar.warning(
f"β οΈ Weights file for {name} not found at {path}. "
"Using ImageNet-pretrained backbone + random head."
)
# if path is None β silently use ImageNet + random head
models[name] = model
return models
# ------------------------------------------------------------
# IMAGE HELPERS
# ------------------------------------------------------------
def read_image_file(uploaded_file) -> Image.Image:
image = Image.open(uploaded_file).convert("RGB")
return image
def preprocess_for_classifier(pil_img: Image.Image) -> np.ndarray:
img_resized = pil_img.resize(IMG_SIZE, Image.BILINEAR)
arr = np.array(img_resized, dtype=np.float32)
arr = np.expand_dims(arr, axis=0) # (1, H, W, 3)
return arr
# ------------------------------------------------------------
# DRAW BOXES FOR DETECTION
# ------------------------------------------------------------
def draw_boxes_with_labels(
pil_img: Image.Image,
detections: List[Dict[str, Any]],
font_path: str = None
) -> Image.Image:
draw = ImageDraw.Draw(pil_img)
if font_path and os.path.exists(font_path):
font = ImageFont.truetype(font_path, 16)
else:
font = ImageFont.load_default()
for det in detections:
x1, y1, x2, y2 = det["x1"], det["y1"], det["x2"], det["y2"]
yolo_label = det["label"]
conf_yolo = det["conf_yolo"]
cls_label = det.get("cls_label")
cls_conf = det.get("cls_conf")
if cls_label is not None:
text = f"{yolo_label} {conf_yolo:.2f} | CLS: {cls_label} {cls_conf:.2f}"
else:
text = f"{yolo_label} {conf_yolo:.2f}"
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
bbox = draw.textbbox((0, 0), text, font=font)
text_w = bbox[2] - bbox[0]
text_h = bbox[3] - bbox[1]
text_bg = [x1,
max(0, y1 - text_h - 2),
x1 + text_w + 4,
y1]
draw.rectangle(text_bg, fill="black")
draw.text((x1 + 2, max(0, y1 - text_h - 1)), text, fill="white", font=font)
return pil_img
def run_yolo_with_optional_classifier(
pil_img: Image.Image,
yolo_model: YOLO,
classifier_model: keras.Model = None,
conf_threshold: float = 0.5
) -> Dict[str, Any]:
"""Run YOLO on a PIL image, optionally verify each box with classifier."""
orig_w, orig_h = pil_img.size
t0 = time.perf_counter()
results = yolo_model.predict(
pil_img,
imgsz=640,
conf=conf_threshold,
device="cpu", # change to "0" if GPU available
verbose=False,
)
t1 = time.perf_counter()
infer_time = t1 - t0
res = results[0]
boxes = res.boxes
detections = []
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
cls_id = int(box.cls[0].item())
conf_yolo = float(box.conf[0].item())
label = res.names[cls_id]
x1 = max(0, min(x1, orig_w - 1))
y1 = max(0, min(y1, orig_h - 1))
x2 = max(0, min(x2, orig_w - 1))
y2 = max(0, min(y2, orig_h - 1))
cls_label = None
cls_conf = None
if classifier_model is not None:
crop = pil_img.crop((x1, y1, x2, y2))
arr = preprocess_for_classifier(crop)
probs = classifier_model.predict(arr, verbose=0)[0]
idx = int(np.argmax(probs))
cls_label = CLASS_NAMES[idx]
cls_conf = float(probs[idx])
detections.append(
{
"x1": x1,
"y1": y1,
"x2": x2,
"y2": y2,
"label": label,
"conf_yolo": conf_yolo,
"cls_label": cls_label,
"cls_conf": cls_conf,
}
)
annotated = pil_img.copy()
annotated = draw_boxes_with_labels(annotated, detections)
return {
"annotated_image": annotated,
"detections": detections,
"yolo_inference_time_sec": infer_time,
}
# ------------------------------------------------------------
# METRICS LOADING
# ------------------------------------------------------------
@st.cache_data
def load_classification_metrics() -> pd.DataFrame:
rows = []
for name, path in CLASS_METRIC_PATHS.items():
if os.path.exists(path):
with open(path, "r") as f:
m = json.load(f)
rows.append(
{
"Model": name,
"Accuracy": m.get("accuracy", None),
"F1 (weighted)": m.get("f1_weighted", None),
"Top-5 Accuracy": m.get("top5_accuracy", None),
"Images/sec": m.get("images_per_second", None),
"Size (MB)": m.get("model_size_mb", None),
}
)
df = pd.DataFrame(rows)
return df
@st.cache_data
def load_yolo_metrics() -> Dict[str, Any]:
if not os.path.exists(YOLO_METRICS_JSON):
return {}
with open(YOLO_METRICS_JSON, "r") as f:
return json.load(f)
# ------------------------------------------------------------
# SIDEBAR NAVIGATION
# ------------------------------------------------------------
PAGES = [
"π Home",
"πΌοΈ Image Classification",
"π¦ Object Detection",
"π Model Performance",
"π· Webcam Detection (snapshot)",
"βΉοΈ About",
]
page = st.sidebar.radio("Navigate", PAGES)
# ------------------------------------------------------------
# PAGE 1 β HOME
# ------------------------------------------------------------
if page == "π Home":
col1, col2 = st.columns([1.2, 1])
with col1:
st.subheader("π Project Overview")
st.markdown(
"""
SmartVision AI is a complete computer vision pipeline built on a curated subset
of **25 COCO classes**. It brings together:
- π§ **Image Classification** using multiple CNN backbones:
`VGG16 Β· ResNet50 Β· MobileNetV2 Β· EfficientNetB0`
- π― **Object Detection** using **YOLOv8s**, fine-tuned on the same 25 classes
- π **Integrated Pipeline** where YOLO detects objects and
**ResNet50** verifies the cropped regions
- π **Interactive Streamlit Dashboard** for demos, metrics visualization, and experiments
"""
)
with col2:
st.subheader("πΉοΈ How to Use This App")
st.markdown(
"""
1. **πΌοΈ Image Classification**
Upload an image with a **single dominant object** to classify it.
2. **π¦ Object Detection**
Upload a **scene with multiple objects** to run YOLOv8 detection.
3. **π Model Performance**
Explore **accuracy, F1-score, speed, and confusion matrices** for all models.
4. **π· Webcam Detection (Snapshot)** *(optional)*
Capture an image via webcam and run **real-time YOLO detection**.
"""
)
st.markdown(
"""
> π‘ Tip: Start with **Object Detection** to see YOLOv8 in action,
> then inspect misclassifications in **Model Performance**.
"""
)
st.divider()
st.subheader("π§ͺ Sample Annotated Outputs")
sample_dir = "inference_outputs"
if os.path.exists(sample_dir):
imgs = [
os.path.join(sample_dir, f)
for f in os.listdir(sample_dir)
if f.lower().endswith((".jpg", ".png", ".jpeg"))
]
if imgs:
cols = st.columns(min(3, len(imgs)))
for i, img_path in enumerate(imgs[:3]):
with cols[i]:
st.image(img_path, caption=os.path.basename(img_path), use_container_width=False)
else:
st.info("No sample images found in `inference_outputs/` yet.")
else:
st.info("`inference_outputs/` folder not found yet β run inference to create samples.")
# ------------------------------------------------------------
# PAGE 2 β IMAGE CLASSIFICATION
# ------------------------------------------------------------
elif page == "πΌοΈ Image Classification":
st.subheader("Image Classification β 4 CNN Models")
st.write(
"""
Upload an image that mainly contains **one object**.
The app will run **all 4 CNN models** and show **top-5 predictions** per model.
"""
)
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
pil_img = read_image_file(uploaded_file)
st.image(pil_img, caption="Uploaded image", use_container_width=False)
with st.spinner("Loading classification models..."):
cls_models = load_classification_models()
if not cls_models:
st.error("No classification models could be loaded. Check your saved_models/ folder.")
else:
arr = preprocess_for_classifier(pil_img)
st.markdown("### Predictions")
cols = st.columns(len(cls_models))
for (model_name, model), col in zip(cls_models.items(), cols):
with col:
st.markdown(f"**{model_name}**")
probs = model.predict(arr, verbose=0)[0]
top5_idx = probs.argsort()[-5:][::-1]
top5_labels = [CLASS_NAMES[i] for i in top5_idx]
top5_probs = [probs[i] for i in top5_idx]
st.write(f"**Top-1:** {top5_labels[0]} ({top5_probs[0]:.3f})")
st.write("Top-5:")
for lbl, p in zip(top5_labels, top5_probs):
st.write(f"- {lbl}: {p:.3f}")
# ------------------------------------------------------------
# PAGE 3 β OBJECT DETECTION
# ------------------------------------------------------------
elif page == "π¦ Object Detection":
st.subheader("Object Detection β YOLOv8 + Optional ResNet Verification")
st.write(
"""
Upload an image containing one or more of the 25 COCO classes.
YOLOv8 will detect all objects and optionally verify them with the best classifier (ResNet50).
"""
)
conf_th = st.slider("Confidence threshold", 0.1, 0.9, 0.5, 0.05)
use_classifier = st.checkbox("Use ResNet50 classifier verification on crops", value=True)
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
pil_img = read_image_file(uploaded_file)
# β REMOVE THIS (caused duplicate)
# st.image(pil_img, caption="Uploaded image", use_container_width=False)
with st.spinner("Loading YOLO model..."):
yolo_model = load_yolo_model()
classifier_model = None
if use_classifier:
with st.spinner("Loading ResNet50 classifier..."):
classifier_model = build_resnet50_model_v2()
weights_path = CLASSIFIER_MODEL_CONFIGS["ResNet50"]["path"]
if os.path.exists(weights_path):
try:
classifier_model.load_weights(weights_path)
except Exception as e:
st.warning(f"Could not load ResNet50 v2 weights for detection: {e}")
classifier_model = None
else:
st.warning("ResNet50 weights not found β classifier verification disabled.")
classifier_model = None
with st.spinner("Running detection..."):
result = run_yolo_with_optional_classifier(
pil_img=pil_img,
yolo_model=yolo_model,
classifier_model=classifier_model,
conf_threshold=conf_th,
)
# β
ONLY 2 IMAGES SHOWN β SIDE BY SIDE
col1, col2 = st.columns(2)
with col1:
st.image(pil_img, caption="Uploaded Image", use_container_width=True)
with col2:
st.image(result["annotated_image"], caption="Detected Result", use_container_width=True)
st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
st.write(f"Number of detections: {len(result['detections'])}")
if result["detections"]:
st.markdown("### Detected objects")
df_det = pd.DataFrame([
{
"YOLO label": det["label"],
"YOLO confidence level": det["conf_yolo"],
"CLS label": det.get("cls_label"),
"CLS confidence level": det.get("cls_conf"),
}
for det in result["detections"]
])
st.dataframe(df_det, use_container_width=False)
# ------------------------------------------------------------
# PAGE 4 β MODEL PERFORMANCE
# ------------------------------------------------------------
elif page == "π Model Performance":
st.subheader("Model Performance β Classification vs Detection")
# --- Classification metrics ---
st.markdown("### π§ Classification Models (VGG16, ResNet50, MobileNetV2, EfficientNetB0)")
df_cls = load_classification_metrics()
if df_cls.empty:
st.info("No classification metrics found yet in `smartvision_metrics/`.")
else:
st.dataframe(df_cls, use_container_width=False)
col1, col2 = st.columns(2)
with col1:
st.bar_chart(
df_cls.set_index("Model")["Accuracy"],
use_container_width=True,
)
with col2:
st.bar_chart(
df_cls.set_index("Model")["F1 (weighted)"],
use_container_width=True,
)
st.markdown("#### Inference Speed (images/sec)")
st.bar_chart(
df_cls.set_index("Model")["Images/sec"],
use_container_width=True,
)
# --- YOLO metrics ---
st.markdown("### π¦ YOLOv8 Detection Model")
yolo_m = load_yolo_metrics()
if not yolo_m:
st.info("No YOLO metrics found yet in `yolo_metrics/`.")
else:
col1, col2, col3 = st.columns(3)
with col1:
st.metric("mAP@0.5", f"{yolo_m.get('map_50', 0):.3f}")
with col2:
st.metric("mAP@0.5:0.95", f"{yolo_m.get('map_50_95', 0):.3f}")
with col3:
st.metric("YOLO FPS", f"{yolo_m.get('fps', 0):.2f}")
st.write("YOLO metrics JSON:", YOLO_METRICS_JSON)
# --- Confusion matrix & comparison plots (if available) ---
st.markdown("### π Comparison Plots & Confusion Matrices")
comp_dir = os.path.join("smartvision_metrics", "comparison_plots")
if os.path.exists(comp_dir):
imgs = [
os.path.join(comp_dir, f)
for f in os.listdir(comp_dir)
if f.lower().endswith(".png")
]
if imgs:
for img in sorted(imgs):
st.image(img, caption=os.path.basename(img), use_container_width=True)
else:
st.info("No comparison plots found in `smartvision_metrics/comparison_plots/`.")
else:
st.info("Folder `smartvision_metrics/comparison_plots/` not found.")
# ------------------------------------------------------------
# PAGE 5 β WEBCAM DETECTION (SNAPSHOT)
# ------------------------------------------------------------
elif page == "π· Webcam Detection (snapshot)":
st.subheader("Webcam Detection (Snapshot-based)")
st.write(
"""
This page uses Streamlit's `camera_input` to grab a **single frame**
from your webcam and run YOLOv8 detection on it.
(For true real-time streaming, you would typically use `streamlit-webrtc`.)
"""
)
conf_th = st.slider("Confidence threshold", 0.1, 0.9, 0.5, 0.05)
cam_image = st.camera_input("Capture image from webcam")
if cam_image is not None:
pil_img = Image.open(cam_image).convert("RGB")
with st.spinner("Loading YOLO model..."):
yolo_model = load_yolo_model()
with st.spinner("Running detection..."):
result = run_yolo_with_optional_classifier(
pil_img=pil_img,
yolo_model=yolo_model,
classifier_model=None, # detection-only for speed
conf_threshold=conf_th,
)
st.image(result["annotated_image"], caption="Detections", use_container_width=False)
st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
st.write(f"Number of detections: {len(result['detections'])}")
# ------------------------------------------------------------
# PAGE 6 β ABOUT
# ------------------------------------------------------------
elif page == "βΉοΈ About":
st.subheader("About SmartVision AI")
st.markdown(
"""
**Dataset:**
- Subset of MS COCO with 25 commonly occurring classes
- Split into train/val/test for both classification & detection
**Models used:**
- **Classification:**
- VGG16
- ResNet50
- MobileNetV2
- EfficientNetB0
- **Detection:**
- YOLOv8s fine-tuned on the same 25 classes
**Pipeline Highlights:**
- Integrated pipeline: YOLO detects β ResNet50 verifies object crops
- Performance metrics:
- CNN test accuracy, F1, Top-5 accuracy, images/sec, model size
- YOLO mAP@0.5, mAP@0.5:0.95, FPS
- Quantization-ready: ResNet50 can be exported to float16 TFLite for deployment.
**Tech Stack:**
- Python, TensorFlow / Keras, Ultralytics YOLOv8
- Streamlit for interactive dashboard
- NumPy, Pandas, Pillow, Matplotlib
"""
)
|