Spaces:
Running
Running
File size: 12,562 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# ============================================================
# SMARTVISION AI - MODEL 3 (v3): MobileNetV2 (FAST + ACCURATE)
# with manual label smoothing + deeper fine-tuning
# ============================================================
import os
import time
import json
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, regularizers
from sklearn.metrics import (
precision_recall_fscore_support,
confusion_matrix,
classification_report,
)
print("TensorFlow version:", tf.__version__)
# ------------------------------------------------------------
# 1. CONFIGURATION
# ------------------------------------------------------------
BASE_DIR = "smartvision_dataset"
CLASS_DIR = os.path.join(BASE_DIR, "classification")
TRAIN_DIR = os.path.join(CLASS_DIR, "train")
VAL_DIR = os.path.join(CLASS_DIR, "val")
TEST_DIR = os.path.join(CLASS_DIR, "test")
IMG_SIZE = (224, 224)
BATCH_SIZE = 32
NUM_CLASSES = 25
MODELS_DIR = "saved_models"
METRICS_DIR = "smartvision_metrics"
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(METRICS_DIR, exist_ok=True)
print("Train dir:", TRAIN_DIR)
print("Val dir :", VAL_DIR)
print("Test dir :", TEST_DIR)
# ------------------------------------------------------------
# 2. LOAD DATASETS (CROPPED SINGLE-OBJECT IMAGES)
# ------------------------------------------------------------
train_ds = tf.keras.utils.image_dataset_from_directory(
TRAIN_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=True,
)
val_ds = tf.keras.utils.image_dataset_from_directory(
VAL_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
test_ds = tf.keras.utils.image_dataset_from_directory(
TEST_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
class_names = train_ds.class_names
print("Detected classes:", class_names)
print("Number of classes:", len(class_names))
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.prefetch(AUTOTUNE)
val_ds = val_ds.prefetch(AUTOTUNE)
test_ds = test_ds.prefetch(AUTOTUNE)
# ------------------------------------------------------------
# 3. DATA AUGMENTATION (STANDARD, TRAIN-ONLY)
# ------------------------------------------------------------
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.04), # ~±15°
layers.RandomZoom(0.1),
layers.RandomContrast(0.15),
layers.Lambda(lambda x: tf.image.random_brightness(x, max_delta=0.15)),
layers.Lambda(lambda x: tf.image.random_saturation(x, 0.85, 1.15)),
],
name="data_augmentation",
)
# ------------------------------------------------------------
# 4. BUILD MobileNetV2 MODEL (2-STAGE TRAINING)
# ------------------------------------------------------------
def build_mobilenetv2_model_v2():
"""
Returns:
model : full MobileNetV2 classification model
base_model : the MobileNetV2 backbone (for freezing/unfreezing)
"""
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
# Apply augmentation only during training
x = data_augmentation(inputs)
# MobileNetV2 expects [-1, 1] normalized inputs via preprocess_input
x = layers.Lambda(
keras.applications.mobilenet_v2.preprocess_input,
name="mobilenetv2_preprocess",
)(x)
# Pretrained MobileNetV2 backbone
base_model = keras.applications.MobileNetV2(
include_top=False,
weights="imagenet",
input_shape=(*IMG_SIZE, 3),
)
# Run backbone
x = base_model(x)
# Global pooling + custom classification head
x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(x)
x = layers.BatchNormalization(name="head_batchnorm_1")(x)
x = layers.Dropout(0.4, name="head_dropout_1")(x)
x = layers.Dense(
256,
activation="relu",
kernel_regularizer=regularizers.l2(1e-4),
name="head_dense_1",
)(x)
x = layers.BatchNormalization(name="head_batchnorm_2")(x)
x = layers.Dropout(0.5, name="head_dropout_2")(x)
outputs = layers.Dense(
NUM_CLASSES, activation="softmax", name="predictions"
)(x)
model = keras.Model(
inputs=inputs,
outputs=outputs,
name="MobileNetV2_smartvision_v2",
)
return model, base_model
mobilenet_model, base_model = build_mobilenetv2_model_v2()
mobilenet_model.summary()
# ------------------------------------------------------------
# 5. MANUAL LABEL-SMOOTHED LOSS
# ------------------------------------------------------------
def make_sparse_ce_with_label_smoothing(num_classes, label_smoothing=0.05):
ls = float(label_smoothing)
nc = int(num_classes)
def loss_fn(y_true, y_pred):
# y_true: integer labels, shape (batch,)
y_true = tf.cast(y_true, tf.int32)
y_true_oh = tf.one_hot(y_true, depth=nc)
if ls > 0.0:
smooth = ls
y_true_oh = (1.0 - smooth) * y_true_oh + smooth / tf.cast(
nc, tf.float32
)
# y_pred is softmax probabilities
return tf.keras.losses.categorical_crossentropy(
y_true_oh, y_pred, from_logits=False
)
return loss_fn
# ------------------------------------------------------------
# 6. TRAINING UTILITY (SAVES WEIGHTS-ONLY .weights.h5)
# ------------------------------------------------------------
def compile_and_train(
model,
model_name,
train_ds,
val_ds,
epochs,
lr,
model_tag,
patience_es=5,
patience_rlr=2,
):
"""Compile and train model, saving the best weights by val_accuracy."""
print(f"\n===== TRAINING {model_name} ({model_tag}) =====")
optimizer = keras.optimizers.Adam(learning_rate=lr)
loss_fn = make_sparse_ce_with_label_smoothing(
num_classes=NUM_CLASSES,
label_smoothing=0.05,
)
model.compile(
optimizer=optimizer,
loss=loss_fn,
metrics=["accuracy"],
)
# Keras 3 requirement: weights-only must end with ".weights.h5"
best_weights_path = os.path.join(
MODELS_DIR, f"{model_name}_{model_tag}_best.weights.h5"
)
callbacks = [
keras.callbacks.ModelCheckpoint(
filepath=best_weights_path,
monitor="val_accuracy",
save_best_only=True,
save_weights_only=True,
mode="max",
verbose=1,
),
keras.callbacks.EarlyStopping(
monitor="val_accuracy",
patience=patience_es,
restore_best_weights=True,
verbose=1,
),
keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.5,
patience=patience_rlr,
min_lr=1e-6,
verbose=1,
),
]
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=callbacks,
)
return history, best_weights_path
# ------------------------------------------------------------
# 7. STAGE 1: TRAIN HEAD WITH FROZEN BASE
# ------------------------------------------------------------
print("\n===== STAGE 1: Training head with frozen MobileNetV2 base =====")
for layer in base_model.layers:
layer.trainable = False
epochs_stage1 = 12
lr_stage1 = 1e-3
history_stage1, mobilenet_stage1_best = compile_and_train(
mobilenet_model,
model_name="mobilenetv2_v2",
train_ds=train_ds,
val_ds=val_ds,
epochs=epochs_stage1,
lr=lr_stage1,
model_tag="stage1",
patience_es=4,
patience_rlr=2,
)
print("Stage 1 best weights saved at:", mobilenet_stage1_best)
# ------------------------------------------------------------
# 8. STAGE 2: DEEPER FINE-TUNE LAST LAYERS OF BASE MODEL
# ------------------------------------------------------------
print("\n===== STAGE 2: Fine-tuning last layers of MobileNetV2 base =====")
mobilenet_model.load_weights(mobilenet_stage1_best)
base_model.trainable = True
num_unfreeze = 25
print(f"Base model has {len(base_model.layers)} layers.")
print(f"Unfrozen layers in base model: {num_unfreeze}")
for layer in base_model.layers[:-num_unfreeze]:
layer.trainable = False
for layer in base_model.layers[-num_unfreeze:]:
if isinstance(layer, layers.BatchNormalization):
layer.trainable = False
epochs_stage2 = 25
lr_stage2 = 3e-5
history_stage2, mobilenet_stage2_best = compile_and_train(
mobilenet_model,
model_name="mobilenetv2_v2",
train_ds=train_ds,
val_ds=val_ds,
epochs=epochs_stage2,
lr=lr_stage2,
model_tag="stage2",
patience_es=8,
patience_rlr=3,
)
print("Stage 2 best weights saved at:", mobilenet_stage2_best)
print("👉 Use this file in Streamlit app:", mobilenet_stage2_best)
# ------------------------------------------------------------
# 9. EVALUATION + SAVE METRICS & CONFUSION MATRIX
# ------------------------------------------------------------
def evaluate_and_save(model, model_name, best_weights_path, test_ds, class_names):
print(f"\n===== EVALUATING {model_name.upper()} ON TEST SET =====")
model.load_weights(best_weights_path)
print(f"Loaded best weights from {best_weights_path}")
y_true = []
y_pred = []
all_probs = []
total_time = 0.0
total_images = 0
for images, labels in test_ds:
images_np = images.numpy()
bs = images_np.shape[0]
start = time.perf_counter()
probs = model.predict(images_np, verbose=0)
end = time.perf_counter()
total_time += (end - start)
total_images += bs
preds = np.argmax(probs, axis=1)
y_true.extend(labels.numpy())
y_pred.extend(preds)
all_probs.append(probs)
y_true = np.array(y_true)
y_pred = np.array(y_pred)
all_probs = np.concatenate(all_probs, axis=0)
accuracy = float((y_true == y_pred).mean())
precision, recall, f1, _ = precision_recall_fscore_support(
y_true, y_pred, average="weighted", zero_division=0
)
top5_correct = 0
for i, label in enumerate(y_true):
if label in np.argsort(all_probs[i])[-5:]:
top5_correct += 1
top5_acc = top5_correct / len(y_true)
time_per_image = total_time / total_images
images_per_second = 1.0 / time_per_image
temp_w = os.path.join(MODELS_DIR, f"{model_name}_temp_for_size.weights.h5")
model.save_weights(temp_w)
size_mb = os.path.getsize(temp_w) / (1024 * 1024)
os.remove(temp_w)
cm = confusion_matrix(y_true, y_pred)
print("\nClassification Report:")
print(
classification_report(
y_true, y_pred, target_names=class_names, zero_division=0
)
)
print(f"Test Accuracy : {accuracy:.4f}")
print(f"Weighted Precision : {precision:.4f}")
print(f"Weighted Recall : {recall:.4f}")
print(f"Weighted F1-score : {f1:.4f}")
print(f"Top-5 Accuracy : {top5_acc:.4f}")
print(f"Avg time per image : {time_per_image*1000:.2f} ms")
print(f"Images per second : {images_per_second:.2f}")
print(f"Model size (weights) : {size_mb:.2f} MB")
print(f"Num parameters : {model.count_params()}")
save_dir = os.path.join(METRICS_DIR, model_name)
os.makedirs(save_dir, exist_ok=True)
metrics = {
"model_name": model_name,
"accuracy": accuracy,
"precision_weighted": float(precision),
"recall_weighted": float(recall),
"f1_weighted": float(f1),
"top5_accuracy": float(top5_acc),
"avg_inference_time_sec": float(time_per_image),
"images_per_second": float(images_per_second),
"model_size_mb": float(size_mb),
"num_parameters": int(model.count_params()),
}
metrics_path = os.path.join(save_dir, "metrics.json")
cm_path = os.path.join(save_dir, "confusion_matrix.npy")
with open(metrics_path, "w") as f:
json.dump(metrics, f, indent=2)
np.save(cm_path, cm)
print(f"\nSaved metrics to : {metrics_path}")
print(f"Saved confusion matrix to: {cm_path}")
return metrics, cm
mobilenet_metrics, mobilenet_cm = evaluate_and_save(
mobilenet_model,
model_name="mobilenetv2_v2_stage2",
best_weights_path=mobilenet_stage2_best,
test_ds=test_ds,
class_names=class_names,
)
print("\n✅ MobileNetV2 v3 (label-smoothed + deeper FT) pipeline complete.")
print("✅ Use weights file in app:", mobilenet_stage2_best)
|