Spaces:
Running
Running
File size: 12,884 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# ============================================================
# SMARTVISION AI - MODEL 1 (v2): VGG16 (TRANSFER LEARNING + FT)
# with proper preprocess_input + label smoothing + deeper FT
# ============================================================
import os
import time
import json
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.metrics import (
precision_recall_fscore_support,
confusion_matrix,
classification_report,
)
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
print("TensorFlow version:", tf.__version__)
# ------------------------------------------------------------
# 1. CONFIGURATION
# ------------------------------------------------------------
BASE_DIR = "smartvision_dataset" # your dataset root
CLASS_DIR = os.path.join(BASE_DIR, "classification")
TRAIN_DIR = os.path.join(CLASS_DIR, "train")
VAL_DIR = os.path.join(CLASS_DIR, "val")
TEST_DIR = os.path.join(CLASS_DIR, "test")
IMG_SIZE = (224, 224)
BATCH_SIZE = 32
NUM_CLASSES = 25
MODELS_DIR = "saved_models"
METRICS_DIR = "smartvision_metrics"
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(METRICS_DIR, exist_ok=True)
print("Train dir:", TRAIN_DIR)
print("Val dir :", VAL_DIR)
print("Test dir :", TEST_DIR)
# ------------------------------------------------------------
# 2. LOAD DATASETS (FROM CROPPED SINGLE-OBJECT IMAGES)
# ------------------------------------------------------------
train_ds = tf.keras.utils.image_dataset_from_directory(
TRAIN_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=True,
)
val_ds = tf.keras.utils.image_dataset_from_directory(
VAL_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
test_ds = tf.keras.utils.image_dataset_from_directory(
TEST_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
class_names = train_ds.class_names
print("Detected classes:", class_names)
print("Number of classes:", len(class_names))
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.prefetch(AUTOTUNE)
val_ds = val_ds.prefetch(AUTOTUNE)
test_ds = test_ds.prefetch(AUTOTUNE)
# ------------------------------------------------------------
# 3. DATA AUGMENTATION (APPLIED ONLY DURING TRAINING)
# ------------------------------------------------------------
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"), # random horizontal flips
layers.RandomRotation(0.04), # ≈ ±15 degrees
layers.RandomZoom(0.1), # random zoom
layers.RandomContrast(0.2), # ±20% contrast
layers.Lambda(lambda x: tf.image.random_brightness(x, max_delta=0.2)),
layers.Lambda(lambda x: tf.image.random_saturation(x, 0.8, 1.2)),
],
name="data_augmentation",
)
# NOTE:
# We DO NOT use Rescaling(1./255) here.
# Instead, we use VGG16's preprocess_input which subtracts ImageNet means
# and expects BGR ordering. This matches the pretrained weights.
# ------------------------------------------------------------
# 4. BUILD VGG16 MODEL (FROZEN BASE + CUSTOM HEAD)
# ------------------------------------------------------------
def build_vgg16_model_v2():
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
# 1. Augmentation (only active during training)
x = data_augmentation(inputs)
# 2. VGG16-specific preprocessing
x = layers.Lambda(
lambda z: preprocess_input(tf.cast(z, tf.float32)),
name="vgg16_preprocess"
)(x)
# 3. Pre-trained VGG16 backbone (no top classification head)
base_model = VGG16(
include_top=False,
weights="imagenet",
input_tensor=x,
)
# Freeze backbone initially (Stage 1)
base_model.trainable = False
# 4. Custom classification head for 25 classes
x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(base_model.output)
x = layers.Dense(256, activation="relu", name="dense_256")(x)
x = layers.Dropout(0.5, name="dropout_0_5")(x)
outputs = layers.Dense(NUM_CLASSES, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="VGG16_smartvision_v2")
return model
vgg16_model = build_vgg16_model_v2()
vgg16_model.summary()
# ------------------------------------------------------------
# 5. CUSTOM LOSS WITH LABEL SMOOTHING
# ------------------------------------------------------------
def make_sparse_ce_with_label_smoothing(num_classes, label_smoothing=0.05):
"""
Implements sparse categorical crossentropy with manual label smoothing.
Works even if your Keras version doesn't support `label_smoothing` in
SparseCategoricalCrossentropy.__init__.
"""
ls = float(label_smoothing)
nc = int(num_classes)
def loss_fn(y_true, y_pred):
# y_true: integer labels, shape (batch,)
y_true = tf.cast(y_true, tf.int32)
y_true_oh = tf.one_hot(y_true, depth=nc)
if ls > 0.0:
smooth = ls
y_true_oh = (1.0 - smooth) * y_true_oh + smooth / tf.cast(nc, tf.float32)
# y_pred is softmax probabilities
return tf.keras.losses.categorical_crossentropy(
y_true_oh, y_pred, from_logits=False
)
return loss_fn
# ------------------------------------------------------------
# 6. TRAINING UTILITY (COMMON FOR STAGE 1 & 2)
# ------------------------------------------------------------
def compile_and_train(
model,
model_name,
train_ds,
val_ds,
epochs,
lr,
model_tag,
patience_es=5,
patience_rlr=2,
):
"""
Compile and train model, saving the best weights by val_accuracy.
model_name: base name ("vgg16_v2")
model_tag : "stage1" or "stage2" etc.
"""
print(f"\n===== TRAINING {model_name} ({model_tag}) =====")
optimizer = keras.optimizers.Adam(learning_rate=lr)
# Use our custom loss with label smoothing
loss_fn = make_sparse_ce_with_label_smoothing(
num_classes=NUM_CLASSES,
label_smoothing=0.05,
)
model.compile(
optimizer=optimizer,
loss=loss_fn,
metrics=["accuracy"],
)
best_weights_path = os.path.join(MODELS_DIR, f"{model_name}_{model_tag}_best.h5")
callbacks = [
keras.callbacks.ModelCheckpoint(
filepath=best_weights_path,
monitor="val_accuracy",
save_best_only=True,
mode="max",
verbose=1,
),
keras.callbacks.EarlyStopping(
monitor="val_accuracy",
patience=patience_es,
restore_best_weights=True,
verbose=1,
),
keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.5,
patience=patience_rlr,
min_lr=1e-6,
verbose=1,
),
]
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=callbacks,
)
return history, best_weights_path
# ------------------------------------------------------------
# 7. STAGE 1: TRAIN HEAD WITH FROZEN VGG16 BASE
# ------------------------------------------------------------
print("\n===== STAGE 1: Training head with frozen VGG16 base =====")
# Safety: ensure all VGG16 conv blocks are frozen
for layer in vgg16_model.layers:
if layer.name.startswith("block"):
layer.trainable = False
epochs_stage1 = 20
lr_stage1 = 1e-4
history_stage1, vgg16_stage1_best = compile_and_train(
vgg16_model,
model_name="vgg16_v2",
train_ds=train_ds,
val_ds=val_ds,
epochs=epochs_stage1,
lr=lr_stage1,
model_tag="stage1",
patience_es=5,
patience_rlr=2,
)
print("Stage 1 best weights saved at:", vgg16_stage1_best)
# ------------------------------------------------------------
# 8. STAGE 2: FINE-TUNE BLOCK4 + BLOCK5 OF VGG16
# ------------------------------------------------------------
print("\n===== STAGE 2: Fine-tuning VGG16 block4 + block5 =====")
# Load best Stage 1 weights before fine-tuning
vgg16_model.load_weights(vgg16_stage1_best)
# Unfreeze only block4_* and block5_* layers for controlled fine-tuning
for layer in vgg16_model.layers:
if layer.name.startswith("block5") :
layer.trainable = True # fine-tune top two blocks
elif layer.name.startswith("block"):
layer.trainable = False # keep lower blocks frozen (block1–3)
# Head layers (GAP + Dense + Dropout + output) remain trainable
epochs_stage2 = 15
lr_stage2 = 1e-5 # slightly higher than 1e-5 but still safe for FT
history_stage2, vgg16_stage2_best = compile_and_train(
vgg16_model,
model_name="vgg16_v2",
train_ds=train_ds,
val_ds=val_ds,
epochs=epochs_stage2,
lr=lr_stage2,
model_tag="stage2",
patience_es=6,
patience_rlr=3,
)
print("Stage 2 best weights saved at:", vgg16_stage2_best)
# ------------------------------------------------------------
# 9. EVALUATION + SAVE METRICS & CONFUSION MATRIX
# ------------------------------------------------------------
def evaluate_and_save(model, model_name, best_weights_path, test_ds, class_names):
print(f"\n===== EVALUATING {model_name.upper()} ON TEST SET =====")
# Load best weights
model.load_weights(best_weights_path)
print(f"Loaded best weights from {best_weights_path}")
y_true = []
y_pred = []
all_probs = []
total_time = 0.0
total_images = 0
# Predict over test dataset
for images, labels in test_ds:
images_np = images.numpy()
bs = images_np.shape[0]
start = time.perf_counter()
probs = model.predict(images_np, verbose=0)
end = time.perf_counter()
total_time += (end - start)
total_images += bs
preds = np.argmax(probs, axis=1)
y_true.extend(labels.numpy())
y_pred.extend(preds)
all_probs.append(probs)
y_true = np.array(y_true)
y_pred = np.array(y_pred)
all_probs = np.concatenate(all_probs, axis=0)
# Basic metrics
accuracy = float((y_true == y_pred).mean())
precision, recall, f1, _ = precision_recall_fscore_support(
y_true, y_pred, average="weighted", zero_division=0
)
# Top-5 accuracy
top5_correct = 0
for i, label in enumerate(y_true):
if label in np.argsort(all_probs[i])[-5:]:
top5_correct += 1
top5_acc = top5_correct / len(y_true)
# Inference time
time_per_image = total_time / total_images
images_per_second = 1.0 / time_per_image
# Model size (weights only)
temp_w = os.path.join(MODELS_DIR, f"{model_name}_temp_for_size.weights.h5")
model.save_weights(temp_w)
size_mb = os.path.getsize(temp_w) / (1024 * 1024)
os.remove(temp_w)
# Confusion matrix
cm = confusion_matrix(y_true, y_pred)
print("\nClassification Report:")
print(classification_report(y_true, y_pred, target_names=class_names, zero_division=0))
print(f"Test Accuracy : {accuracy:.4f}")
print(f"Weighted Precision : {precision:.4f}")
print(f"Weighted Recall : {recall:.4f}")
print(f"Weighted F1-score : {f1:.4f}")
print(f"Top-5 Accuracy : {top5_acc:.4f}")
print(f"Avg time per image : {time_per_image*1000:.2f} ms")
print(f"Images per second : {images_per_second:.2f}")
print(f"Model size (weights) : {size_mb:.2f} MB")
print(f"Num parameters : {model.count_params()}")
# Save metrics + confusion matrix in dedicated folder
save_dir = os.path.join(METRICS_DIR, model_name)
os.makedirs(save_dir, exist_ok=True)
metrics = {
"model_name": model_name,
"accuracy": accuracy,
"precision_weighted": float(precision),
"recall_weighted": float(recall),
"f1_weighted": float(f1),
"top5_accuracy": float(top5_acc),
"avg_inference_time_sec": float(time_per_image),
"images_per_second": float(images_per_second),
"model_size_mb": float(size_mb),
"num_parameters": int(model.count_params()),
}
metrics_path = os.path.join(save_dir, "metrics.json")
cm_path = os.path.join(save_dir, "confusion_matrix.npy")
with open(metrics_path, "w") as f:
json.dump(metrics, f, indent=2)
np.save(cm_path, cm)
print(f"\nSaved metrics to : {metrics_path}")
print(f"Saved confusion matrix to: {cm_path}")
return metrics, cm
# Evaluate FINAL (fine-tuned) model on test set
vgg16_metrics, vgg16_cm = evaluate_and_save(
vgg16_model,
model_name="vgg16_v2_stage2",
best_weights_path=vgg16_stage2_best,
test_ds=test_ds,
class_names=class_names,
)
print("\n✅ VGG16 v2 (2-stage, improved) pipeline complete.")
|