File size: 4,987 Bytes
08d66df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# ============================================================
# SMARTVISION AI - YOLOv8 EVALUATION SCRIPT
# - Loads best.pt from training
# - Computes mAP, per-class metrics
# - Measures inference speed (FPS)
# - Saves sample prediction images
# - Saves metrics to JSON for reporting
# ============================================================

import os
import glob
import time
import json
from ultralytics import YOLO

# ------------------------------------------------------------
# 1. PATHS
# ------------------------------------------------------------

BASE_DIR  = "smartvision_dataset"
DET_DIR   = os.path.join(BASE_DIR, "detection")
DATA_YAML = os.path.join(DET_DIR, "data.yaml")

# Folder created by your train_yolo.py script
RUN_DIR       = "yolo_runs/smartvision_yolov8s"
BEST_WEIGHTS  = os.path.join(RUN_DIR, "weights", "best.pt")

# NOTE: all detection images are in detection/images (no "val" subfolder)
VAL_IMAGES_DIR = os.path.join(DET_DIR, "images")

print("πŸ“‚ DATA_YAML   :", DATA_YAML)
print("πŸ“¦ BEST_WEIGHTS:", BEST_WEIGHTS)
print("πŸ“ VAL_IMAGES  :", VAL_IMAGES_DIR)

# ------------------------------------------------------------
# 2. LOAD TRAINED MODEL
# ------------------------------------------------------------

model = YOLO(BEST_WEIGHTS)
print("\nβœ… Loaded trained YOLOv8 model from best.pt")

# ------------------------------------------------------------
# 3. VALIDATION METRICS (mAP, precision, recall)
# ------------------------------------------------------------

print("\n===== RUNNING VALIDATION (YOLO model.val) =====")
metrics = model.val(
    data=DATA_YAML,
    split="val",     # uses val split defined in data.yaml (here both train/val point to 'images')
    imgsz=640,
    save_json=False
)

print("\n===== YOLOv8 Validation Metrics =====")
print(f"mAP@0.5      : {metrics.box.map50:.4f}")
print(f"mAP@0.5:0.95 : {metrics.box.map:.4f}")

# metrics.box.maps is a list of per-class mAP values in the same order as names
print("\nPer-class mAP@0.5 (first 10 classes):")
for i, m in enumerate(metrics.box.maps[:10]):
    print(f"  Class {i}: {m:.4f}")

# ------------------------------------------------------------
# 4. INFERENCE SPEED (FPS) ON VALIDATION IMAGES
# ------------------------------------------------------------

print("\n===== MEASURING INFERENCE SPEED (FPS) =====")

# Collect all JPG images in detection/images
val_images = glob.glob(os.path.join(VAL_IMAGES_DIR, "*.jpg"))
val_images = sorted(val_images)

num_test_images = min(50, len(val_images))  # test on up to 50 images
test_images = val_images[:num_test_images]

print(f"Found {len(val_images)} images in {VAL_IMAGES_DIR}")
print(f"Using {len(test_images)} images for speed test.")

# Defaults in case there are no images
time_per_image = 0.0
fps = 0.0

if len(test_images) == 0:
    print("⚠️ No images found for FPS test. Skipping speed measurement.")
else:
    start = time.perf_counter()

    _ = model.predict(
        source=test_images,
        imgsz=640,
        conf=0.5,
        verbose=False
    )

    end = time.perf_counter()

    total_time = end - start
    time_per_image = total_time / len(test_images)
    fps = 1.0 / time_per_image

    print(f"Total time       : {total_time:.2f} sec for {len(test_images)} images")
    print(f"Avg time / image : {time_per_image*1000:.2f} ms")
    print(f"Approx FPS       : {fps:.2f} images/sec")

# ------------------------------------------------------------
# 5. SAVE SAMPLE PREDICTIONS (BOXES + LABELS)
# ------------------------------------------------------------

print("\n===== SAVING SAMPLE PREDICTION IMAGES =====")

sample_out_project = "yolo_vis"
sample_out_name    = "samples"

if len(test_images) == 0:
    print("⚠️ No images available for sample visualization. Skipping sample predictions.")
else:
    sample_results = model.predict(
        source=test_images[:8],  # first 8 images
        imgsz=640,
        conf=0.5,
        save=True,               # save annotated images
        project=sample_out_project,
        name=sample_out_name,
        verbose=False
    )

    print(f"βœ… Saved sample predictions (with boxes & labels) to: {sample_out_project}/{sample_out_name}/")

# ------------------------------------------------------------
# 6. SAVE METRICS TO JSON (FOR REPORTING)
# ------------------------------------------------------------

print("\n===== SAVING METRICS TO JSON =====")

yolo_metrics = {
    "model_name": "yolov8s_smartvision",
    "map_50": float(metrics.box.map50),
    "map_50_95": float(metrics.box.map),
    "num_val_images_for_speed_test": int(len(test_images)),
    "avg_inference_time_sec": float(time_per_image),
    "fps": float(fps),
}

os.makedirs("yolo_metrics", exist_ok=True)
metrics_json_path = os.path.join("yolo_metrics", "yolov8s_metrics.json")

with open(metrics_json_path, "w") as f:
    json.dump(yolo_metrics, f, indent=2)

print(f"βœ… Saved YOLO metrics JSON to: {metrics_json_path}")
print("\n🎯 YOLOv8 evaluation complete.")