Spaces:
Running
Running
File size: 8,647 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# ============================================================
# SMARTVISION DATASET BUILDER β FIXED VERSION
# - Streams COCO
# - Selects 25 classes
# - Builds train/val/test for YOLO
# - Uses correct image width/height for normalization
# ============================================================
import os
import json
import random
from tqdm import tqdm
from datasets import load_dataset
from PIL import Image
# ------------------------------------------------------------
# CONFIG
# ------------------------------------------------------------
BASE_DIR = "smartvision_dataset"
IMAGES_PER_CLASS = 100 # you can increase if needed
TARGET_CLASSES = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"truck", "traffic light", "stop sign", "bench", "bird", "cat",
"dog", "horse", "cow", "elephant", "bottle", "cup", "bowl",
"pizza", "cake", "chair", "couch", "bed", "potted plant"
]
# COCO full classes (80)
COCO_CLASSES = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck",
"boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",
"giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove",
"skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse",
"remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink",
"refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush",
]
COCO_NAME_TO_INDEX = {name: i for i, name in enumerate(COCO_CLASSES)}
SELECTED = {name: COCO_NAME_TO_INDEX[name] for name in TARGET_CLASSES}
os.makedirs(BASE_DIR, exist_ok=True)
# ------------------------------------------------------------
# STEP 1 β STREAM COCO & COLLECT IMAGES
# ------------------------------------------------------------
print("π₯ Loading COCO dataset (streaming mode)...")
dataset = load_dataset("detection-datasets/coco", split="train", streaming=True)
class_images = {c: [] for c in TARGET_CLASSES}
class_count = {c: 0 for c in TARGET_CLASSES}
print("π Collecting images...")
max_iterations = 100000 # safety cap
for idx, item in enumerate(dataset):
if idx >= max_iterations:
print(f"β οΈ Reached safety limit of {max_iterations} samples, stopping collection.")
break
ann = item["objects"]
# Get image and its size (this is the reference for bbox coordinates)
img = item["image"]
orig_width, orig_height = img.size
for cat_id in ann["category"]:
# If this category is one of our target classes
for cname, coco_id in SELECTED.items():
if cat_id == coco_id and class_count[cname] < IMAGES_PER_CLASS:
class_images[cname].append({
"image": img, # PIL image
"orig_width": orig_width, # width used for normalization
"orig_height": orig_height, # height used for normalization
"bboxes": ann["bbox"], # list of bboxes
"cats": ann["category"], # list of categories
})
class_count[cname] += 1
break
# Stop if all collected
if all(count >= IMAGES_PER_CLASS for count in class_count.values()):
break
print("π Collection complete")
print("π Images per class:")
for cname, cnt in class_count.items():
print(f" {cname:15s}: {cnt}")
# ------------------------------------------------------------
# STEP 2 β CREATE FOLDERS
# ------------------------------------------------------------
DET_IMG_ROOT = os.path.join(BASE_DIR, "detection", "images")
DET_LAB_ROOT = os.path.join(BASE_DIR, "detection", "labels")
for split in ["train", "val", "test"]:
os.makedirs(os.path.join(DET_IMG_ROOT, split), exist_ok=True)
os.makedirs(os.path.join(DET_LAB_ROOT, split), exist_ok=True)
# ------------------------------------------------------------
# STEP 3 β TRAIN/VAL/TEST SPLIT
# ------------------------------------------------------------
train_data = {}
val_data = {}
test_data = {}
for cname, items in class_images.items():
random.shuffle(items)
n = len(items)
if n == 0:
print(f"β οΈ No images collected for class: {cname}")
continue
t1 = int(0.7 * n)
t2 = int(0.85 * n)
train_data[cname] = items[:t1]
val_data[cname] = items[t1:t2]
test_data[cname] = items[t2:]
split_dict = {
"train": train_data,
"val": val_data,
"test": test_data,
}
print("\nπ Split sizes (per class):")
for cname in TARGET_CLASSES:
tr = len(train_data.get(cname, []))
va = len(val_data.get(cname, []))
te = len(test_data.get(cname, []))
print(f" {cname:15s} -> Train={tr:3d}, Val={va:3d}, Test={te:3d}")
# ------------------------------------------------------------
# STEP 4 β SAVE DETECTION IMAGES & LABELS (FIXED NORMALIZATION)
# ------------------------------------------------------------
print("\nπ Saving detection images + labels with correct coordinates...\n")
YOLO_NAME_TO_ID = {name: i for i, name in enumerate(TARGET_CLASSES)}
global_idx = 0
stats = {"train": 0, "val": 0, "test": 0}
label_stats = {"train": 0, "val": 0, "test": 0}
object_stats = {"train": 0, "val": 0, "test": 0}
for split, cls_dict in split_dict.items():
print(f"\nπΉ Processing {split.upper()} ...")
for cname, items in tqdm(cls_dict.items(), desc=f"{split} classes"):
for item in items:
img = item["image"]
orig_w = item["orig_width"]
orig_h = item["orig_height"]
img_filename = f"image_{global_idx:06d}.jpg"
img_path = os.path.join(DET_IMG_ROOT, split, img_filename)
lab_path = os.path.join(DET_LAB_ROOT, split, img_filename.replace(".jpg", ".txt"))
img.save(img_path, quality=95)
stats[split] += 1
bboxes = item["bboxes"]
cats = item["cats"]
yolo_lines = []
obj_count = 0
for bbox, cat in zip(bboxes, cats):
# Only use 25 SmartVision classes
coco_class_name = COCO_CLASSES[cat]
if coco_class_name not in YOLO_NAME_TO_ID:
continue
yolo_id = YOLO_NAME_TO_ID[coco_class_name]
x, y, w, h = bbox # COCO: pixel values
# Normalize using image size
x_center = (x + w / 2) / orig_w
y_center = (y + h / 2) / orig_h
w_norm = w / orig_w
h_norm = h / orig_h
# discard invalid
if not (0 <= x_center <= 1 and 0 <= y_center <= 1):
continue
if not (0 < w_norm <= 1 and 0 < h_norm <= 1):
continue
yolo_lines.append(
f"{yolo_id} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}"
)
obj_count += 1
if yolo_lines:
with open(lab_path, "w") as f:
f.write("\n".join(yolo_lines))
label_stats[split] += 1
object_stats[split] += obj_count
global_idx += 1
print("\nπ All detection data saved successfully!")
for split in ["train", "val", "test"]:
print(
f" {split.upper():5s} -> "
f"images: {stats[split]:4d}, "
f"label_files: {label_stats[split]:4d}, "
f"objects: {object_stats[split]:5d}"
)
# ------------------------------------------------------------
# STEP 5 β WRITE data.yaml
# ------------------------------------------------------------
print("\nπ Writing data.yaml ...")
yaml = f"""
# SmartVision Dataset - YOLOv8 Configuration (with splits)
path: {os.path.abspath(os.path.join(BASE_DIR, "detection"))}
train: images/train
val: images/val
test: images/test
nc: {len(TARGET_CLASSES)}
names:
""" + "\n".join([f" {i}: {name}" for i, name in enumerate(TARGET_CLASSES)])
data_yaml_path = os.path.join(BASE_DIR, "detection", "data.yaml")
os.makedirs(os.path.dirname(data_yaml_path), exist_ok=True)
with open(data_yaml_path, "w") as f:
f.write(yaml)
print(f"β
Created data.yaml at: {data_yaml_path}")
|