File size: 14,249 Bytes
08d66df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# ============================================================
# SMARTVISION AI - PHASE 4
# Model Integration & Inference Pipeline (YOLOv8 + ResNet50 v2)
# ============================================================

import os
import time
from typing import List, Dict, Any

import numpy as np
from PIL import Image, ImageDraw, ImageFont

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from ultralytics import YOLO

print("TensorFlow version:", tf.__version__)

# ------------------------------------------------------------
# 1. CONFIGURATION
# ------------------------------------------------------------

# Dataset & models
BASE_DIR = "smartvision_dataset"
CLASS_DIR = os.path.join(BASE_DIR, "classification")
TRAIN_DIR = os.path.join(CLASS_DIR, "train")

# YOLO & classifier weights
YOLO_WEIGHTS = "yolo_runs/smartvision_yolov8s6 - Copy/weights/best.pt"  # adjust if needed
CLASSIFIER_WEIGHTS_PATH = os.path.join(
    "saved_models", "resnet50_v2_stage2_best.weights.h5"
)

IMG_SIZE = (224, 224)
NUM_CLASSES = 25

# Where to save annotated outputs
OUTPUT_DIR = "inference_outputs"
os.makedirs(OUTPUT_DIR, exist_ok=True)

# ------------------------------------------------------------
# 2. CLASS NAMES (MUST MATCH TRAINING ORDER)
#    From your training logs:
#    ['airplane', 'bed', 'bench', 'bicycle', 'bird', 'bottle', 'bowl',
#     'bus', 'cake', 'car', 'cat', 'chair', 'couch', 'cow', 'cup', 'dog',
#     'elephant', 'horse', 'motorcycle', 'person', 'pizza', 'potted plant',
#     'stop sign', 'traffic light', 'truck']
# ------------------------------------------------------------

CLASS_NAMES = [
    "airplane", "bed", "bench", "bicycle", "bird", "bottle", "bowl",
    "bus", "cake", "car", "cat", "chair", "couch", "cow", "cup", "dog",
    "elephant", "horse", "motorcycle", "person", "pizza", "potted plant",
    "stop sign", "traffic light", "truck"
]

assert len(CLASS_NAMES) == NUM_CLASSES, "CLASS_NAMES length must be 25"

# ------------------------------------------------------------
# 3. DATA AUGMENTATION (same as training, but no effect in inference)
# ------------------------------------------------------------

data_augmentation = keras.Sequential(
    [
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(0.04),       # ~Β±15Β°
        layers.RandomZoom(0.1),
        layers.RandomContrast(0.15),
        layers.Lambda(
            lambda x: tf.image.random_brightness(x, max_delta=0.15)
        ),
        layers.Lambda(
            lambda x: tf.image.random_saturation(x, 0.85, 1.15)
        ),
    ],
    name="data_augmentation",
)

# ------------------------------------------------------------
# 4. BUILD RESNET50 v2 CLASSIFIER (MATCHES TRAINING ARCHITECTURE)
# ------------------------------------------------------------

def build_resnet50_model_v2():
    """
    Build the ResNet50 v2 classifier with the SAME architecture as in training.
    (data_augmentation + Lambda(resnet50.preprocess_input) + ResNet50 backbone + head)
    """
    inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")

    # Augmentation (no randomness in inference mode, Keras handles that)
    x = data_augmentation(inputs)

    # ResNet50-specific preprocessing
    x = layers.Lambda(
        keras.applications.resnet50.preprocess_input,
        name="resnet50_preprocess",
    )(x)

    # Pretrained ResNet50 backbone
    base_model = keras.applications.ResNet50(
        include_top=False,
        weights="imagenet",
        input_shape=(*IMG_SIZE, 3),
    )

    x = base_model(x)

    # Custom classification head (same as training file)
    x = layers.GlobalAveragePooling2D(name="global_average_pooling2d")(x)

    x = layers.BatchNormalization(name="head_batchnorm")(x)
    x = layers.Dropout(0.4, name="head_dropout")(x)

    x = layers.Dense(
        256,
        activation="relu",
        name="head_dense",
    )(x)

    x = layers.BatchNormalization(name="head_batchnorm_2")(x)
    x = layers.Dropout(0.5, name="head_dropout_2")(x)

    outputs = layers.Dense(
        NUM_CLASSES,
        activation="softmax",
        name="predictions",
    )(x)

    model = keras.Model(
        inputs=inputs,
        outputs=outputs,
        name="ResNet50_smartvision_v2_infer",
    )

    return model, base_model


def load_classifier(weights_path: str):
    """
    Build the ResNet50 v2 model and load fine-tuned weights from
    resnet50_v2_stage2_best.weights.h5
    """
    if not os.path.exists(weights_path):
        print(f"⚠️ Classifier weights not found at: {weights_path}")
        print("   Using ImageNet-pretrained ResNet50 base + randomly initialized head.")
        model, _ = build_resnet50_model_v2()
        return model

    model, _ = build_resnet50_model_v2()
    model.load_weights(weights_path)
    print(f"βœ… Loaded classifier weights from: {weights_path}")
    return model

# ------------------------------------------------------------
# 5. LOAD YOLO MODEL
# ------------------------------------------------------------

def load_yolo_model(weights_path: str = YOLO_WEIGHTS) -> YOLO:
    if not os.path.exists(weights_path):
        raise FileNotFoundError(f"YOLO weights not found at: {weights_path}")
    model = YOLO(weights_path)
    print(f"βœ… Loaded YOLOv8 model from: {weights_path}")
    return model

# ------------------------------------------------------------
# 6. HELPER: PREPROCESS CROP FOR CLASSIFIER
# ------------------------------------------------------------

def preprocess_crop_for_classifier(crop_img: Image.Image,
                                   img_size=IMG_SIZE) -> np.ndarray:
    """
    Resize PIL image crop to 224x224 and prepare as batch tensor.
    NOTE: No manual rescaling here; model already has preprocess_input inside.
    """
    crop_resized = crop_img.resize(img_size, Image.BILINEAR)
    arr = np.array(crop_resized, dtype=np.float32)  # shape (H,W,3)
    arr = np.expand_dims(arr, axis=0)  # (1,H,W,3)
    return arr

# ------------------------------------------------------------
# 7. DRAWING UTIL: BOUNDING BOXES + LABELS (Pillow 10+ SAFE)
# ------------------------------------------------------------

def draw_boxes_with_labels(
    pil_img: Image.Image,
    detections: List[Dict[str, Any]],
    font_path: str = None
) -> Image.Image:
    """
    Draw bounding boxes & labels on an image.

    detections: list of dicts with keys:
      - x1, y1, x2, y2
      - label (str)
      - conf_yolo (float)
      - cls_label (optional, str)
      - cls_conf (optional, float)
    """
    draw = ImageDraw.Draw(pil_img)

    # Try to load a TTF font, fallback to default
    if font_path and os.path.exists(font_path):
        font = ImageFont.truetype(font_path, 16)
    else:
        font = ImageFont.load_default()

    for det in detections:
        x1, y1, x2, y2 = det["x1"], det["y1"], det["x2"], det["y2"]
        yolo_label = det["label"]
        conf_yolo = det["conf_yolo"]
        cls_label = det.get("cls_label")
        cls_conf = det.get("cls_conf")

        # Text to display
        if cls_label is not None:
            text = f"{yolo_label} {conf_yolo:.2f} | CLS: {cls_label} {cls_conf:.2f}"
        else:
            text = f"{yolo_label} {conf_yolo:.2f}"

        # Box
        draw.rectangle([x1, y1, x2, y2], outline="red", width=2)

        # Compute text size safely (Pillow 10+)
        bbox = draw.textbbox((0, 0), text, font=font)
        text_w = bbox[2] - bbox[0]
        text_h = bbox[3] - bbox[1]

        # Text background (clamp to top of image)
        text_bg = [x1,
                   max(0, y1 - text_h - 2),
                   x1 + text_w + 4,
                   y1]
        draw.rectangle(text_bg, fill="black")
        draw.text((x1 + 2, max(0, y1 - text_h - 1)), text, fill="white", font=font)

    return pil_img

# ------------------------------------------------------------
# 8. SINGLE-IMAGE PIPELINE
#    user_image β†’ YOLO β†’ (optional ResNet verify) β†’ annotated image
# ------------------------------------------------------------

def run_inference_on_image(
    image_path: str,
    yolo_model: YOLO,
    classifier: keras.Model = None,
    conf_threshold: float = 0.5,
    save_name: str = None
) -> Dict[str, Any]:
    """
    Full pipeline on a single image.

    - Runs YOLO detection (with NMS internally).
    - Filters by conf_threshold.
    - Optionally runs ResNet50 classifier on each crop.
    - Draws bounding boxes + labels.
    - Saves annotated image to OUTPUT_DIR.
    """
    if not os.path.exists(image_path):
        raise FileNotFoundError(f"Image not found: {image_path}")

    print(f"\nπŸ” Processing image: {image_path}")
    pil_img = Image.open(image_path).convert("RGB")
    orig_w, orig_h = pil_img.size

    # YOLO prediction (NMS is automatically applied)
    t0 = time.perf_counter()
    results = yolo_model.predict(
        source=image_path,
        imgsz=640,
        conf=conf_threshold,
        device="cpu",     # change to "0" if you have a GPU
        verbose=False
    )
    t1 = time.perf_counter()
    infer_time = t1 - t0
    print(f"YOLO inference time: {infer_time*1000:.2f} ms")

    res = results[0]  # one image
    boxes = res.boxes  # Boxes object

    detections = []

    for box in boxes:
        # xyxy coordinates
        x1, y1, x2, y2 = box.xyxy[0].tolist()
        cls_id = int(box.cls[0].item())
        conf_yolo = float(box.conf[0].item())
        label = yolo_model.names[cls_id]  # class name from YOLO model

        # Clip coords to image size, just in case
        x1 = max(0, min(x1, orig_w - 1))
        y1 = max(0, min(y1, orig_h - 1))
        x2 = max(0, min(x2, orig_w - 1))
        y2 = max(0, min(y2, orig_h - 1))

        # Optional classification verification
        cls_label = None
        cls_conf = None
        if classifier is not None:
            crop = pil_img.crop((x1, y1, x2, y2))
            arr = preprocess_crop_for_classifier(crop)
            probs = classifier.predict(arr, verbose=0)[0]  # shape (25,)
            cls_idx = int(np.argmax(probs))
            cls_label = CLASS_NAMES[cls_idx]
            cls_conf = float(probs[cls_idx])

        detection_info = {
            "x1": x1,
            "y1": y1,
            "x2": x2,
            "y2": y2,
            "class_id_yolo": cls_id,
            "label": label,
            "conf_yolo": conf_yolo,
            "cls_label": cls_label,
            "cls_conf": cls_conf,
        }
        detections.append(detection_info)

    # Draw boxes
    annotated = pil_img.copy()
    annotated = draw_boxes_with_labels(annotated, detections)

    # Save output image
    if save_name is None:
        base = os.path.basename(image_path)
        name_wo_ext, _ = os.path.splitext(base)
        save_name = f"{name_wo_ext}_annotated.jpg"

    save_path = os.path.join(OUTPUT_DIR, save_name)
    annotated.save(save_path)
    print(f"βœ… Saved annotated image to: {save_path}")

    return {
        "image_path": image_path,
        "output_path": save_path,
        "num_detections": len(detections),
        "detections": detections,
        "yolo_inference_time_sec": infer_time,
    }

# ------------------------------------------------------------
# 9. BATCH PIPELINE (MULTIPLE IMAGES)
# ------------------------------------------------------------

def run_inference_on_folder(
    folder_path: str,
    yolo_model: YOLO,
    classifier: keras.Model = None,
    conf_threshold: float = 0.5,
    max_images: int = None
) -> List[Dict[str, Any]]:
    """
    Run the full pipeline on all images in a folder.
    """
    supported_ext = (".jpg", ".jpeg", ".png")
    image_files = [
        os.path.join(folder_path, f)
        for f in os.listdir(folder_path)
        if f.lower().endswith(supported_ext)
    ]
    image_files.sort()

    if max_images is not None:
        image_files = image_files[:max_images]

    results_all = []
    for img_path in image_files:
        res = run_inference_on_image(
            img_path,
            yolo_model=yolo_model,
            classifier=classifier,
            conf_threshold=conf_threshold
        )
        results_all.append(res)

    return results_all

# ------------------------------------------------------------
# 10. SIMPLE QUANTIZATION (CLASSIFIER β†’ TFLITE FLOAT16)
# ------------------------------------------------------------

def export_classifier_tflite_float16(
    keras_model: keras.Model,
    export_path: str = "resnet50_smartvision_float16.tflite"
):
    """
    Export the classifier to a TFLite model with float16 quantization.
    This is suitable for faster inference on CPU / mobile.
    """
    converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.target_spec.supported_types = [tf.float16]

    tflite_model = converter.convert()
    with open(export_path, "wb") as f:
        f.write(tflite_model)

    size_mb = os.path.getsize(export_path) / (1024 * 1024)
    print(f"βœ… Exported float16 TFLite model to: {export_path} ({size_mb:.2f} MB)")

# ------------------------------------------------------------
# 11. MAIN (for quick testing)
# ------------------------------------------------------------

if __name__ == "__main__":
    print("πŸ”§ Loading models...")
    yolo_model = load_yolo_model(YOLO_WEIGHTS)
    classifier_model = load_classifier(CLASSIFIER_WEIGHTS_PATH)

    # Example: run on a single test image
    test_image = os.path.join(BASE_DIR, "detection", "images", "test", "image_002126.jpg")
    if os.path.exists(test_image):
        _ = run_inference_on_image(
            image_path=test_image,
            yolo_model=yolo_model,
            classifier=classifier_model,
            conf_threshold=0.5,
        )
    else:
        print(f"⚠️ Example image not found: {test_image}")

    # Example: run on a folder of images
    # folder = os.path.join(BASE_DIR, "detection", "images")
    # _ = run_inference_on_folder(
    #     folder_path=folder,
    #     yolo_model=yolo_model,
    #     classifier=classifier_model,
    #     conf_threshold=0.5,
    #     max_images=10,
    # )

    # Example: export quantized classifier
    # export_classifier_tflite_float16(classifier_model)