Spaces:
Running
Running
File size: 11,496 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
"""
YOLO Dataset Validation & Cleaning Script
==========================================
This script will:
1. Validate all YOLO label files
2. Fix out-of-bounds coordinates (clip to [0,1])
3. Remove invalid/empty annotations
4. Generate a detailed report
5. Create backups before making changes
6. Clear corrupted cache files
"""
import os
import glob
import shutil
import json
from datetime import datetime
from pathlib import Path
class YOLODatasetCleaner:
def __init__(self, dataset_dir):
self.dataset_dir = dataset_dir
self.detection_dir = os.path.join(dataset_dir, "detection")
self.labels_dir = os.path.join(self.detection_dir, "labels")
self.images_dir = os.path.join(self.detection_dir, "images")
self.backup_dir = os.path.join(dataset_dir, f"backup_{datetime.now().strftime('%Y%m%d_%H%M%S')}")
self.stats = {
'total_files': 0,
'corrupt_files': 0,
'fixed_files': 0,
'removed_files': 0,
'empty_files': 0,
'splits': {'train': {}, 'val': {}, 'test': {}}
}
def create_backup(self):
"""Create backup of labels directory"""
print("\n" + "="*60)
print("π¦ CREATING BACKUP")
print("="*60)
if os.path.exists(self.backup_dir):
print(f"β οΈ Backup directory already exists: {self.backup_dir}")
return False
try:
shutil.copytree(self.labels_dir, os.path.join(self.backup_dir, "labels"))
print(f"β
Backup created at: {self.backup_dir}")
return True
except Exception as e:
print(f"β Backup failed: {e}")
return False
def validate_label_line(self, line):
"""Validate a single label line and return fixed version if needed"""
parts = line.strip().split()
# Need at least 5 values: class_id x_center y_center width height
if len(parts) < 5:
return None, "insufficient_values"
try:
class_id = int(parts[0])
coords = [float(x) for x in parts[1:5]]
# Check if coordinates are out of bounds
issues = []
if any(c < 0 for c in coords):
issues.append("negative_coords")
if any(c > 1 for c in coords):
issues.append("out_of_bounds")
# Check for invalid dimensions (width/height must be > 0)
if coords[2] <= 0 or coords[3] <= 0:
issues.append("invalid_dimensions")
# Clip coordinates to [0, 1]
fixed_coords = [max(0.0, min(1.0, c)) for c in coords]
# Keep width and height positive
if fixed_coords[2] <= 0:
fixed_coords[2] = 0.01
if fixed_coords[3] <= 0:
fixed_coords[3] = 0.01
fixed_line = f"{class_id} {' '.join(f'{c:.6f}' for c in fixed_coords)}\n"
return fixed_line, issues if issues else None
except (ValueError, IndexError) as e:
return None, f"parse_error: {e}"
def clean_label_file(self, label_path):
"""Clean a single label file"""
try:
with open(label_path, 'r') as f:
lines = f.readlines()
if not lines:
return {'status': 'empty', 'issues': ['empty_file']}
fixed_lines = []
all_issues = []
for line_num, line in enumerate(lines, 1):
if not line.strip():
continue
fixed_line, issues = self.validate_label_line(line)
if fixed_line is None:
all_issues.append(f"line_{line_num}: {issues}")
else:
fixed_lines.append(fixed_line)
if issues:
all_issues.extend([f"line_{line_num}: {issue}" for issue in issues])
if not fixed_lines:
return {'status': 'all_invalid', 'issues': all_issues}
# Write back fixed labels
with open(label_path, 'w') as f:
f.writelines(fixed_lines)
if all_issues:
return {'status': 'fixed', 'issues': all_issues, 'lines_kept': len(fixed_lines)}
else:
return {'status': 'valid', 'issues': [], 'lines_kept': len(fixed_lines)}
except Exception as e:
return {'status': 'error', 'issues': [str(e)]}
def process_split(self, split_name):
"""Process all label files in a split (train/val/test)"""
print(f"\nπ Processing {split_name.upper()} split...")
label_path = os.path.join(self.labels_dir, split_name)
image_path = os.path.join(self.images_dir, split_name)
if not os.path.exists(label_path):
print(f"β οΈ Labels directory not found: {label_path}")
return
label_files = glob.glob(os.path.join(label_path, "*.txt"))
split_stats = {
'total': len(label_files),
'valid': 0,
'fixed': 0,
'empty': 0,
'removed': 0,
'corrupt_files': []
}
for label_file in label_files:
self.stats['total_files'] += 1
result = self.clean_label_file(label_file)
if result['status'] == 'valid':
split_stats['valid'] += 1
elif result['status'] == 'fixed':
split_stats['fixed'] += 1
self.stats['fixed_files'] += 1
split_stats['corrupt_files'].append({
'file': os.path.basename(label_file),
'issues': result['issues']
})
elif result['status'] in ['empty', 'all_invalid']:
split_stats['empty'] += 1
self.stats['empty_files'] += 1
split_stats['corrupt_files'].append({
'file': os.path.basename(label_file),
'issues': result['issues']
})
# Remove empty/invalid label files and corresponding images
img_file = label_file.replace(label_path, image_path).replace('.txt', '.jpg')
try:
os.remove(label_file)
if os.path.exists(img_file):
os.remove(img_file)
split_stats['removed'] += 1
self.stats['removed_files'] += 1
print(f" ποΈ Removed: {os.path.basename(label_file)}")
except Exception as e:
print(f" β Could not remove {os.path.basename(label_file)}: {e}")
self.stats['splits'][split_name] = split_stats
print(f" β
Valid: {split_stats['valid']}")
print(f" π§ Fixed: {split_stats['fixed']}")
print(f" ποΈ Removed: {split_stats['removed']}")
def clear_cache_files(self):
"""Remove YOLO cache files"""
print("\n" + "="*60)
print("π§Ή CLEARING CACHE FILES")
print("="*60)
cache_files = glob.glob(os.path.join(self.labels_dir, "**/*.cache"), recursive=True)
for cache_file in cache_files:
try:
os.remove(cache_file)
print(f" β
Removed: {cache_file}")
except Exception as e:
print(f" β Could not remove {cache_file}: {e}")
print(f"β
Removed {len(cache_files)} cache files")
def generate_report(self):
"""Generate detailed cleaning report"""
print("\n" + "="*60)
print("π CLEANING REPORT")
print("="*60)
print(f"\nπ Overall Statistics:")
print(f" Total files processed: {self.stats['total_files']}")
print(f" Files fixed: {self.stats['fixed_files']}")
print(f" Files removed: {self.stats['removed_files']}")
print(f" Empty files: {self.stats['empty_files']}")
print(f"\nπ Per-Split Statistics:")
for split, data in self.stats['splits'].items():
if data:
print(f"\n {split.upper()}:")
print(f" Total: {data['total']}")
print(f" Valid: {data['valid']}")
print(f" Fixed: {data['fixed']}")
print(f" Removed: {data['removed']}")
# Save detailed report to JSON
report_path = os.path.join(self.dataset_dir, f"cleaning_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json")
with open(report_path, 'w') as f:
json.dump(self.stats, f, indent=2)
print(f"\nπΎ Detailed report saved to: {report_path}")
def verify_dataset(self):
"""Verify dataset after cleaning"""
print("\n" + "="*60)
print("β
VERIFICATION")
print("="*60)
for split in ['train', 'val', 'test']:
label_path = os.path.join(self.labels_dir, split)
image_path = os.path.join(self.images_dir, split)
label_files = glob.glob(os.path.join(label_path, "*.txt"))
image_files = glob.glob(os.path.join(image_path, "*.jpg"))
print(f"\n{split.upper()}:")
print(f" Images: {len(image_files)}")
print(f" Labels: {len(label_files)}")
if len(image_files) != len(label_files):
print(f" β οΈ WARNING: Image/Label count mismatch!")
def run(self):
"""Run the complete cleaning pipeline"""
print("\n" + "="*60)
print("π YOLO DATASET CLEANER")
print("="*60)
print(f"Dataset directory: {self.dataset_dir}")
# Step 1: Create backup
if not self.create_backup():
response = input("\nβ οΈ Proceed without backup? (yes/no): ")
if response.lower() != 'yes':
print("β Cleaning cancelled.")
return
# Step 2: Process each split
print("\n" + "="*60)
print("π§ CLEANING LABELS")
print("="*60)
for split in ['train', 'val', 'test']:
self.process_split(split)
# Step 3: Clear cache
self.clear_cache_files()
# Step 4: Generate report
self.generate_report()
# Step 5: Verify
self.verify_dataset()
print("\n" + "="*60)
print("β
CLEANING COMPLETE!")
print("="*60)
print("\nπ― Next Steps:")
print(" 1. Review the cleaning report")
print(" 2. Delete old training runs: rm -rf yolo_runs/smartvision_yolov8s*")
print(" 3. Retrain your model: python scripts/train_yolo_smartvision.py")
print(f"\nπΎ Backup location: {self.backup_dir}")
print(" (You can restore from backup if needed)")
if __name__ == "__main__":
# Configuration
DATASET_DIR = "smartvision_dataset"
# Run the cleaner
cleaner = YOLODatasetCleaner(DATASET_DIR)
cleaner.run() |