Spaces:
Running
Running
File size: 7,986 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# ============================================================
# SMARTVISION AI - YOLOv8 TRAIN + EVAL SCRIPT
# - Uses separate train / val / test splits
# - QUICK_TEST flag lets you sanity-check the whole pipeline
# with just 1 epoch before doing full training
# ============================================================
import os
import glob
import time
import json
import torch
from ultralytics import YOLO
# ------------------------------------------------------------
# 0. CONFIG: QUICK TEST OR FULL TRAINING?
# ------------------------------------------------------------
# First run with QUICK_TEST = True (1 epoch, debug run).
# If everything runs end-to-end without errors, set it to False.
QUICK_TEST = True # <<< CHANGE TO False FOR FULL TRAINING
FULL_EPOCHS = 50
DEBUG_EPOCHS = 1
EPOCHS = DEBUG_EPOCHS if QUICK_TEST else FULL_EPOCHS
RUN_NAME = "smartvision_yolov8s_debug" if QUICK_TEST else "smartvision_yolov8s"
print("βοΈ QUICK_TEST :", QUICK_TEST)
print("βοΈ EPOCHS :", EPOCHS)
print("βοΈ RUN_NAME :", RUN_NAME)
# ------------------------------------------------------------
# 1. PATHS & CONFIG
# ------------------------------------------------------------
BASE_DIR = "smartvision_dataset"
DET_DIR = os.path.join(BASE_DIR, "detection")
DATA_YAML = os.path.join(DET_DIR, "data.yaml")
# Expected folder structure:
# smartvision_dataset/detection/
# data.yaml
# images/train, images/val, images/test
# labels/train, labels/val, labels/test
RUN_PROJECT = "yolo_runs"
MODEL_WEIGHTS = "yolov8s.pt" # base checkpoint to fine-tune
VAL_IMAGES_DIR = os.path.join(DET_DIR, "images", "val")
# Auto-select device
device = "0" if torch.cuda.is_available() else "cpu"
print("π Using device:", device)
print("π DATA_YAML :", DATA_YAML)
# Basic path checks (fail fast if something is wrong)
if not os.path.exists(DATA_YAML):
raise FileNotFoundError(f"data.yaml not found at: {DATA_YAML}")
for split in ["train", "val", "test"]:
img_dir = os.path.join(DET_DIR, "images", split)
lab_dir = os.path.join(DET_DIR, "labels", split)
if not os.path.isdir(img_dir):
raise FileNotFoundError(f"Images directory missing: {img_dir}")
if not os.path.isdir(lab_dir):
raise FileNotFoundError(f"Labels directory missing: {lab_dir}")
if len(glob.glob(os.path.join(img_dir, "*.jpg"))) == 0:
print(f"β οΈ Warning: No .jpg images found in {img_dir}")
# ------------------------------------------------------------
# 2. LOAD BASE MODEL
# ------------------------------------------------------------
print(f"\nπ₯ Loading YOLOv8 base model from: {MODEL_WEIGHTS}")
model = YOLO(MODEL_WEIGHTS)
# ------------------------------------------------------------
# 3. TRAIN
# ------------------------------------------------------------
print("\n===== STARTING TRAINING =====")
print("(This is a QUICK TEST run)" if QUICK_TEST else "(Full training run)")
results = model.train(
data=DATA_YAML,
epochs=EPOCHS,
imgsz=640,
batch=8, # adjust if more GPU RAM
lr0=0.01,
optimizer="SGD",
device=device,
project=RUN_PROJECT,
name=RUN_NAME,
pretrained=True,
plots=True,
verbose=True,
)
print("\nβ
YOLO training complete.")
RUN_DIR = os.path.join(RUN_PROJECT, RUN_NAME)
BEST_WEIGHTS = os.path.join(RUN_DIR, "weights", "best.pt")
print("π Run directory:", RUN_DIR)
print("π¦ Best weights :", BEST_WEIGHTS)
if not os.path.exists(BEST_WEIGHTS):
raise FileNotFoundError(f"best.pt not found at: {BEST_WEIGHTS}")
# ------------------------------------------------------------
# 4. LOAD TRAINED MODEL (best.pt)
# ------------------------------------------------------------
print("\nπ₯ Loading trained model from best.pt")
model = YOLO(BEST_WEIGHTS)
print("β
Loaded trained YOLOv8 model.")
print("π Class mapping (model.names):")
print(model.names)
# ------------------------------------------------------------
# 5. VALIDATION & TEST METRICS
# ------------------------------------------------------------
print("\n===== RUNNING VALIDATION (val split) =====")
metrics_val = model.val(
data=DATA_YAML,
split="val", # images/val + labels/val
imgsz=640,
save_json=False
)
print("\n===== YOLOv8 Validation Metrics =====")
print(f"[VAL] mAP@0.5 : {metrics_val.box.map50:.4f}")
print(f"[VAL] mAP@0.5:0.95 : {metrics_val.box.map:.4f}")
print("\nPer-class mAP@0.5 on VAL (first 10 classes):")
for i, m in enumerate(metrics_val.box.maps[:10]):
print(f" Class {i}: {m:.4f}")
print("\n===== RUNNING TEST EVALUATION (test split) =====")
metrics_test = model.val(
data=DATA_YAML,
split="test", # images/test + labels/test
imgsz=640,
save_json=False
)
print("\n===== YOLOv8 Test Metrics =====")
print(f"[TEST] mAP@0.5 : {metrics_test.box.map50:.4f}")
print(f"[TEST] mAP@0.5:0.95 : {metrics_test.box.map:.4f}")
# ------------------------------------------------------------
# 6. INFERENCE SPEED (FPS) ON VAL IMAGES
# ------------------------------------------------------------
print("\n===== MEASURING INFERENCE SPEED (FPS) ON VAL IMAGES =====")
val_images = glob.glob(os.path.join(VAL_IMAGES_DIR, "*.jpg"))
val_images = sorted(val_images)
num_test_images = min(10 if QUICK_TEST else 50, len(val_images))
test_images = val_images[:num_test_images]
print(f"Found {len(val_images)} images in {VAL_IMAGES_DIR}")
print(f"Using {len(test_images)} images for speed test.")
time_per_image = 0.0
fps = 0.0
if len(test_images) == 0:
print("β οΈ No images found for FPS test. Skipping speed measurement.")
else:
start = time.perf_counter()
_ = model.predict(
source=test_images,
imgsz=640,
conf=0.5,
verbose=False
)
end = time.perf_counter()
total_time = end - start
time_per_image = total_time / len(test_images)
fps = 1.0 / time_per_image
print(f"Total time : {total_time:.2f} sec for {len(test_images)} images")
print(f"Avg time / image : {time_per_image*1000:.2f} ms")
print(f"Approx FPS : {fps:.2f} images/sec")
# ------------------------------------------------------------
# 7. SAVE SAMPLE PREDICTION IMAGES (FROM VAL)
# ------------------------------------------------------------
print("\n===== SAVING SAMPLE PREDICTION IMAGES (VAL) =====")
sample_out_project = "yolo_vis"
sample_out_name = "samples_debug" if QUICK_TEST else "samples"
if len(test_images) == 0:
print("β οΈ No val images available for sample visualization. Skipping sample predictions.")
else:
_ = model.predict(
source=test_images[:4 if QUICK_TEST else 8],
imgsz=640,
conf=0.5,
save=True,
project=sample_out_project,
name=sample_out_name,
verbose=False,
)
print(f"β
Saved sample predictions (with boxes & labels) to: {sample_out_project}/{sample_out_name}/")
# ------------------------------------------------------------
# 8. SAVE METRICS TO JSON
# ------------------------------------------------------------
print("\n===== SAVING METRICS TO JSON =====")
os.makedirs("yolo_metrics", exist_ok=True)
metrics_json_path = os.path.join("yolo_metrics", "yolov8s_metrics_debug.json" if QUICK_TEST else "yolov8s_metrics.json")
yolo_metrics = {
"model_name": "yolov8s_smartvision",
"quick_test": QUICK_TEST,
"epochs": EPOCHS,
"run_dir": RUN_DIR,
"best_weights": BEST_WEIGHTS,
"val_map_50": float(metrics_val.box.map50),
"val_map_50_95": float(metrics_val.box.map),
"test_map_50": float(metrics_test.box.map50),
"test_map_50_95": float(metrics_test.box.map),
"num_val_images_for_speed_test": int(len(test_images)),
"avg_inference_time_sec": float(time_per_image),
"fps": float(fps),
}
with open(metrics_json_path, "w") as f:
json.dump(yolo_metrics, f, indent=2)
print(f"β
Saved YOLO metrics JSON to: {metrics_json_path}")
print("\nπ― YOLOv8 training + evaluation script finished.")
|