Spaces:
Running
Running
File size: 8,915 Bytes
08d66df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
"""
SMARTVISION AI - Step 2.5: Model Comparison & Selection
This script:
- Loads metrics.json and confusion_matrix.npy for all models.
- Compares accuracy, precision, recall, F1, top-5 accuracy, speed, and model size.
- Generates bar plots for metrics.
- Generates confusion matrix heatmaps per model.
- Selects the best model using an accuracy–speed tradeoff rule.
"""
import os
import json
import numpy as np
import matplotlib.pyplot as plt
# ------------------------------------------------------------
# 0. CONFIG – resolve paths relative to this file
# ------------------------------------------------------------
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(SCRIPT_DIR) # one level up from scripts/
METRICS_DIR = os.path.join(ROOT_DIR, "smartvision_metrics")
PLOTS_DIR = os.path.join(METRICS_DIR, "comparison_plots")
os.makedirs(PLOTS_DIR, exist_ok=True)
print(f"[INFO] Using METRICS_DIR = {METRICS_DIR}")
print(f"[INFO] Existing subfolders in METRICS_DIR: {os.listdir(METRICS_DIR) if os.path.exists(METRICS_DIR) else 'NOT FOUND'}")
# Map "pretty" model names to their metrics subdirectories
MODEL_PATHS = {
"VGG16" : "vgg16_v2_stage2",
"ResNet50" : "resnet50_v2_stage2",
"MobileNetV2" : "mobilenetv2_v2",
"efficientnetb0" : "efficientnetb0",
# Optional: add more models here, e.g.:
# "ResNet50 v2 (Stage 1)" : "resnet50_v2_stage1",
}
# Class names (COCO-style 25 classes)
CLASS_NAMES = [
"airplane", "bed", "bench", "bicycle", "bird",
"bottle", "bowl", "bus", "cake", "car",
"cat", "chair", "couch", "cow", "cup",
"dog", "elephant", "horse", "motorcycle", "person",
"pizza", "potted plant", "stop sign", "traffic light", "truck",
]
# ------------------------------------------------------------
# 1. LOAD METRICS & CONFUSION MATRICES
# ------------------------------------------------------------
def load_model_results():
model_metrics = {}
model_cms = {}
for nice_name, folder_name in MODEL_PATHS.items():
metrics_path = os.path.join(METRICS_DIR, folder_name, "metrics.json")
cm_path = os.path.join(METRICS_DIR, folder_name, "confusion_matrix.npy")
print(f"[DEBUG] Looking for {nice_name} metrics at: {metrics_path}")
print(f"[DEBUG] Looking for {nice_name} CM at : {cm_path}")
if not os.path.exists(metrics_path):
print(f"[WARN] Skipping {nice_name}: missing {metrics_path}")
continue
if not os.path.exists(cm_path):
print(f"[WARN] Skipping {nice_name}: missing {cm_path}")
continue
with open(metrics_path, "r") as f:
metrics = json.load(f)
cm = np.load(cm_path)
model_metrics[nice_name] = metrics
model_cms[nice_name] = cm
print(f"[INFO] Loaded metrics & CM for {nice_name}")
return model_metrics, model_cms
# ------------------------------------------------------------
# 2. PLOTTING HELPERS
# ------------------------------------------------------------
def plot_bar_metric(model_metrics, metric_key, ylabel, filename, higher_is_better=True):
names = list(model_metrics.keys())
values = [model_metrics[n][metric_key] for n in names]
plt.figure(figsize=(8, 5))
bars = plt.bar(names, values)
plt.ylabel(ylabel)
plt.xticks(rotation=20, ha="right")
for bar, val in zip(bars, values):
plt.text(
bar.get_x() + bar.get_width() / 2,
bar.get_height(),
f"{val:.3f}",
ha="center",
va="bottom",
fontsize=8,
)
title_prefix = "Higher is better" if higher_is_better else "Lower is better"
plt.title(f"{metric_key} comparison ({title_prefix})")
plt.tight_layout()
out_path = os.path.join(PLOTS_DIR, filename)
plt.savefig(out_path, dpi=200)
plt.close()
print(f"[PLOT] Saved {metric_key} comparison to {out_path}")
def plot_confusion_matrix(cm, classes, title, filename, normalize=True):
if normalize:
cm = cm.astype("float") / (cm.sum(axis=1)[:, np.newaxis] + 1e-12)
plt.figure(figsize=(6, 5))
im = plt.imshow(cm, interpolation="nearest")
plt.title(title)
plt.colorbar(im, fraction=0.046, pad=0.04)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
# annotate diagonal only to reduce clutter
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
if i == j:
plt.text(
j,
i,
f"{cm[i, j]:.2f}",
ha="center",
va="center",
color="white" if cm[i, j] > 0.5 else "black",
fontsize=6,
)
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.tight_layout()
out_path = os.path.join(PLOTS_DIR, filename)
plt.savefig(out_path, dpi=200)
plt.close()
print(f"[PLOT] Saved confusion matrix to {out_path}")
# ------------------------------------------------------------
# 3. MODEL SELECTION (ACCURACY–SPEED TRADEOFF)
# ------------------------------------------------------------
def pick_best_model(model_metrics):
"""
Rule:
1. Prefer highest accuracy.
2. If two models are within 0.5% accuracy, prefer higher images_per_second.
"""
best_name = None
best_acc = -1.0
best_speed = -1.0
for name, m in model_metrics.items():
acc = m["accuracy"]
speed = m.get("images_per_second", 0.0)
if acc > best_acc + 0.005: # clearly better
best_name = name
best_acc = acc
best_speed = speed
elif abs(acc - best_acc) <= 0.005: # within 0.5%, use speed as tie-breaker
if speed > best_speed:
best_name = name
best_acc = acc
best_speed = speed
return best_name, best_acc, best_speed
# ------------------------------------------------------------
# 4. MAIN
# ------------------------------------------------------------
def main():
model_metrics, model_cms = load_model_results()
if not model_metrics:
print("[ERROR] No models found with valid metrics. Check METRICS_DIR and MODEL_PATHS.")
return
print("\n===== MODEL METRICS SUMMARY =====")
print(
f"{'Model':30s} {'Acc':>6s} {'Prec':>6s} {'Rec':>6s} {'F1':>6s} {'Top5':>6s} {'img/s':>7s} {'Size(MB)':>8s}"
)
for name, m in model_metrics.items():
print(
f"{name:30s} "
f"{m['accuracy']:.3f} "
f"{m['precision_weighted']:.3f} "
f"{m['recall_weighted']:.3f} "
f"{m['f1_weighted']:.3f} "
f"{m['top5_accuracy']:.3f} "
f"{m['images_per_second']:.2f} "
f"{m['model_size_mb']:.1f}"
)
# ---- Comparison plots ----
plot_bar_metric(model_metrics, "accuracy", "Accuracy", "accuracy_comparison.png")
plot_bar_metric(
model_metrics, "f1_weighted", "Weighted F1-score", "f1_comparison.png"
)
plot_bar_metric(
model_metrics, "top5_accuracy", "Top-5 Accuracy", "top5_comparison.png"
)
plot_bar_metric(
model_metrics,
"images_per_second",
"Images per second",
"speed_comparison.png",
)
plot_bar_metric(
model_metrics,
"model_size_mb",
"Model size (MB)",
"size_comparison.png",
higher_is_better=False,
)
# ---- Confusion matrices ----
print("\n===== SAVING CONFUSION MATRICES =====")
for name, cm in model_cms.items():
safe_name = name.replace(" ", "_").replace("(", "").replace(")", "")
filename = f"{safe_name}_cm.png"
plot_confusion_matrix(
cm,
classes=CLASS_NAMES,
title=f"Confusion Matrix - {name}",
filename=filename,
normalize=True,
)
# ---- Best model ----
best_name, best_acc, best_speed = pick_best_model(model_metrics)
print("\n===== BEST MODEL SELECTION =====")
print(f"Selected best model: {best_name}")
print(f" Test Accuracy : {best_acc:.4f}")
print(f" Images per second : {best_speed:.2f}")
print("\nRationale:")
print("- Highest accuracy is preferred.")
print("- If models are within 0.5% accuracy, the faster model (higher img/s) is chosen.")
print("\nSuggested text for report:")
print(
f"\"Among all evaluated architectures, {best_name} achieved the best accuracy–speed "
f"tradeoff on the SmartVision AI test set, with a top-1 accuracy of {best_acc:.3f} "
f"and an inference throughput of {best_speed:.2f} images per second on the "
f"evaluation hardware.\""
)
if __name__ == "__main__":
main()
|