File size: 8,915 Bytes
08d66df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
SMARTVISION AI - Step 2.5: Model Comparison & Selection

This script:
- Loads metrics.json and confusion_matrix.npy for all models.
- Compares accuracy, precision, recall, F1, top-5 accuracy, speed, and model size.
- Generates bar plots for metrics.
- Generates confusion matrix heatmaps per model.
- Selects the best model using an accuracy–speed tradeoff rule.
"""

import os
import json
import numpy as np
import matplotlib.pyplot as plt

# ------------------------------------------------------------
# 0. CONFIG – resolve paths relative to this file
# ------------------------------------------------------------

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR   = os.path.dirname(SCRIPT_DIR)           # one level up from scripts/
METRICS_DIR = os.path.join(ROOT_DIR, "smartvision_metrics")
PLOTS_DIR   = os.path.join(METRICS_DIR, "comparison_plots")
os.makedirs(PLOTS_DIR, exist_ok=True)

print(f"[INFO] Using METRICS_DIR = {METRICS_DIR}")
print(f"[INFO] Existing subfolders in METRICS_DIR: {os.listdir(METRICS_DIR) if os.path.exists(METRICS_DIR) else 'NOT FOUND'}")

# Map "pretty" model names to their metrics subdirectories
MODEL_PATHS = {
    "VGG16"    : "vgg16_v2_stage2",
    "ResNet50" : "resnet50_v2_stage2",
    "MobileNetV2"           : "mobilenetv2_v2",
    "efficientnetb0"           : "efficientnetb0",
    # Optional: add more models here, e.g.:
    # "ResNet50 v2 (Stage 1)"  : "resnet50_v2_stage1",
}

# Class names (COCO-style 25 classes)
CLASS_NAMES = [
    "airplane", "bed", "bench", "bicycle", "bird",
    "bottle", "bowl", "bus", "cake", "car",
    "cat", "chair", "couch", "cow", "cup",
    "dog", "elephant", "horse", "motorcycle", "person",
    "pizza", "potted plant", "stop sign", "traffic light", "truck",
]


# ------------------------------------------------------------
# 1. LOAD METRICS & CONFUSION MATRICES
# ------------------------------------------------------------

def load_model_results():
    model_metrics = {}
    model_cms = {}

    for nice_name, folder_name in MODEL_PATHS.items():
        metrics_path = os.path.join(METRICS_DIR, folder_name, "metrics.json")
        cm_path      = os.path.join(METRICS_DIR, folder_name, "confusion_matrix.npy")

        print(f"[DEBUG] Looking for {nice_name} metrics at: {metrics_path}")
        print(f"[DEBUG] Looking for {nice_name} CM at     : {cm_path}")

        if not os.path.exists(metrics_path):
            print(f"[WARN] Skipping {nice_name}: missing {metrics_path}")
            continue
        if not os.path.exists(cm_path):
            print(f"[WARN] Skipping {nice_name}: missing {cm_path}")
            continue

        with open(metrics_path, "r") as f:
            metrics = json.load(f)
        cm = np.load(cm_path)

        model_metrics[nice_name] = metrics
        model_cms[nice_name] = cm
        print(f"[INFO] Loaded metrics & CM for {nice_name}")

    return model_metrics, model_cms


# ------------------------------------------------------------
# 2. PLOTTING HELPERS
# ------------------------------------------------------------

def plot_bar_metric(model_metrics, metric_key, ylabel, filename, higher_is_better=True):
    names = list(model_metrics.keys())
    values = [model_metrics[n][metric_key] for n in names]

    plt.figure(figsize=(8, 5))
    bars = plt.bar(names, values)
    plt.ylabel(ylabel)
    plt.xticks(rotation=20, ha="right")

    for bar, val in zip(bars, values):
        plt.text(
            bar.get_x() + bar.get_width() / 2,
            bar.get_height(),
            f"{val:.3f}",
            ha="center",
            va="bottom",
            fontsize=8,
        )

    title_prefix = "Higher is better" if higher_is_better else "Lower is better"
    plt.title(f"{metric_key} comparison ({title_prefix})")
    plt.tight_layout()

    out_path = os.path.join(PLOTS_DIR, filename)
    plt.savefig(out_path, dpi=200)
    plt.close()
    print(f"[PLOT] Saved {metric_key} comparison to {out_path}")


def plot_confusion_matrix(cm, classes, title, filename, normalize=True):
    if normalize:
        cm = cm.astype("float") / (cm.sum(axis=1)[:, np.newaxis] + 1e-12)

    plt.figure(figsize=(6, 5))
    im = plt.imshow(cm, interpolation="nearest")
    plt.title(title)
    plt.colorbar(im, fraction=0.046, pad=0.04)

    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)

    # annotate diagonal only to reduce clutter
    for i in range(cm.shape[0]):
        for j in range(cm.shape[1]):
            if i == j:
                plt.text(
                    j,
                    i,
                    f"{cm[i, j]:.2f}",
                    ha="center",
                    va="center",
                    color="white" if cm[i, j] > 0.5 else "black",
                    fontsize=6,
                )

    plt.ylabel("True label")
    plt.xlabel("Predicted label")
    plt.tight_layout()

    out_path = os.path.join(PLOTS_DIR, filename)
    plt.savefig(out_path, dpi=200)
    plt.close()
    print(f"[PLOT] Saved confusion matrix to {out_path}")


# ------------------------------------------------------------
# 3. MODEL SELECTION (ACCURACY–SPEED TRADEOFF)
# ------------------------------------------------------------

def pick_best_model(model_metrics):
    """
    Rule:
      1. Prefer highest accuracy.
      2. If two models are within 0.5% accuracy, prefer higher images_per_second.
    """
    best_name = None
    best_acc = -1.0
    best_speed = -1.0

    for name, m in model_metrics.items():
        acc = m["accuracy"]
        speed = m.get("images_per_second", 0.0)

        if acc > best_acc + 0.005:  # clearly better
            best_name = name
            best_acc = acc
            best_speed = speed
        elif abs(acc - best_acc) <= 0.005:  # within 0.5%, use speed as tie-breaker
            if speed > best_speed:
                best_name = name
                best_acc = acc
                best_speed = speed

    return best_name, best_acc, best_speed


# ------------------------------------------------------------
# 4. MAIN
# ------------------------------------------------------------

def main():
    model_metrics, model_cms = load_model_results()

    if not model_metrics:
        print("[ERROR] No models found with valid metrics. Check METRICS_DIR and MODEL_PATHS.")
        return

    print("\n===== MODEL METRICS SUMMARY =====")
    print(
        f"{'Model':30s}  {'Acc':>6s}  {'Prec':>6s}  {'Rec':>6s}  {'F1':>6s}  {'Top5':>6s}  {'img/s':>7s}  {'Size(MB)':>8s}"
    )
    for name, m in model_metrics.items():
        print(
            f"{name:30s}  "
            f"{m['accuracy']:.3f}  "
            f"{m['precision_weighted']:.3f}  "
            f"{m['recall_weighted']:.3f}  "
            f"{m['f1_weighted']:.3f}  "
            f"{m['top5_accuracy']:.3f}  "
            f"{m['images_per_second']:.2f}  "
            f"{m['model_size_mb']:.1f}"
        )

    # ---- Comparison plots ----
    plot_bar_metric(model_metrics, "accuracy", "Accuracy", "accuracy_comparison.png")
    plot_bar_metric(
        model_metrics, "f1_weighted", "Weighted F1-score", "f1_comparison.png"
    )
    plot_bar_metric(
        model_metrics, "top5_accuracy", "Top-5 Accuracy", "top5_comparison.png"
    )
    plot_bar_metric(
        model_metrics,
        "images_per_second",
        "Images per second",
        "speed_comparison.png",
    )
    plot_bar_metric(
        model_metrics,
        "model_size_mb",
        "Model size (MB)",
        "size_comparison.png",
        higher_is_better=False,
    )

    # ---- Confusion matrices ----
    print("\n===== SAVING CONFUSION MATRICES =====")
    for name, cm in model_cms.items():
        safe_name = name.replace(" ", "_").replace("(", "").replace(")", "")
        filename = f"{safe_name}_cm.png"
        plot_confusion_matrix(
            cm,
            classes=CLASS_NAMES,
            title=f"Confusion Matrix - {name}",
            filename=filename,
            normalize=True,
        )

    # ---- Best model ----
    best_name, best_acc, best_speed = pick_best_model(model_metrics)

    print("\n===== BEST MODEL SELECTION =====")
    print(f"Selected best model: {best_name}")
    print(f"  Test Accuracy      : {best_acc:.4f}")
    print(f"  Images per second  : {best_speed:.2f}")
    print("\nRationale:")
    print("- Highest accuracy is preferred.")
    print("- If models are within 0.5% accuracy, the faster model (higher img/s) is chosen.")

    print("\nSuggested text for report:")
    print(
        f"\"Among all evaluated architectures, {best_name} achieved the best accuracy–speed "
        f"tradeoff on the SmartVision AI test set, with a top-1 accuracy of {best_acc:.3f} "
        f"and an inference throughput of {best_speed:.2f} images per second on the "
        f"evaluation hardware.\""
    )


if __name__ == "__main__":
    main()