SmartVision_AI / scripts /02_efficientnetb0.py
yogesh-venkat's picture
Auto-deploy from GitHub Actions
08d66df verified
raw
history blame
11.1 kB
# ============================================================
# SMARTVISION AI - MODEL 4: EfficientNetB0 (FINE-TUNING)
# Target: High-accuracy 25-class classifier
# ============================================================
import os
import time
import json
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.metrics import (
precision_recall_fscore_support,
confusion_matrix,
classification_report,
)
print("TensorFlow version:", tf.__version__)
from tensorflow.keras.applications.efficientnet import (
EfficientNetB0,
preprocess_input,
)
# ------------------------------------------------------------
# 1. CONFIGURATION
# ------------------------------------------------------------
BASE_DIR = "smartvision_dataset"
CLASS_DIR = os.path.join(BASE_DIR, "classification")
TRAIN_DIR = os.path.join(CLASS_DIR, "train")
VAL_DIR = os.path.join(CLASS_DIR, "val")
TEST_DIR = os.path.join(CLASS_DIR, "test")
IMG_SIZE = (224, 224) # EfficientNetB0 default
BATCH_SIZE = 32
NUM_CLASSES = 25
MODELS_DIR = "saved_models"
METRICS_DIR = "smartvision_metrics"
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(METRICS_DIR, exist_ok=True)
print("Train dir:", TRAIN_DIR)
print("Val dir :", VAL_DIR)
print("Test dir :", TEST_DIR)
# ------------------------------------------------------------
# 2. LOAD DATASETS
# ------------------------------------------------------------
train_ds = tf.keras.utils.image_dataset_from_directory(
TRAIN_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=True,
)
val_ds = tf.keras.utils.image_dataset_from_directory(
VAL_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
test_ds = tf.keras.utils.image_dataset_from_directory(
TEST_DIR,
image_size=IMG_SIZE,
batch_size=BATCH_SIZE,
shuffle=False,
)
class_names = train_ds.class_names
print("Detected classes:", class_names)
print("Number of classes:", len(class_names))
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.prefetch(AUTOTUNE)
val_ds = val_ds.prefetch(AUTOTUNE)
test_ds = test_ds.prefetch(AUTOTUNE)
# ------------------------------------------------------------
# 3. ADVANCED DATA AUGMENTATION
# ------------------------------------------------------------
def bright_jitter(x):
x_f32 = tf.cast(x, tf.float32)
x_f32 = tf.image.random_brightness(x_f32, max_delta=0.25)
return tf.cast(x_f32, x.dtype)
def sat_jitter(x):
x_f32 = tf.cast(x, tf.float32)
x_f32 = tf.image.random_saturation(x_f32, lower=0.7, upper=1.3)
return tf.cast(x_f32, x.dtype)
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.08), # β‰ˆ Β±30 degrees
layers.RandomZoom(0.15),
layers.RandomContrast(0.3),
layers.RandomTranslation(0.1, 0.1),
layers.Lambda(bright_jitter),
layers.Lambda(sat_jitter),
],
name="advanced_data_augmentation",
)
# ------------------------------------------------------------
# 4. BUILD EfficientNetB0 MODEL (TWO-STAGE FINE-TUNING)
# ------------------------------------------------------------
def build_efficientnetb0_model():
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
# 1. Data augmentation (training only)
x = data_augmentation(inputs)
# 2. EfficientNetB0 preprocess_input
x = layers.Lambda(
lambda z: preprocess_input(tf.cast(z, tf.float32)),
name="effnet_preprocess",
)(x)
# 3. EfficientNetB0 base model (ImageNet)
base_model = EfficientNetB0(
include_top=False,
weights="imagenet",
input_shape=(*IMG_SIZE, 3),
name="efficientnetb0",
)
base_model.trainable = False # Stage 1: frozen
x = base_model(x, training=False)
x = layers.GlobalAveragePooling2D(name="gap")(x)
x = layers.BatchNormalization(name="head_bn_1")(x)
x = layers.Dense(256, activation="relu", name="head_dense_1")(x)
x = layers.BatchNormalization(name="head_bn_2")(x)
x = layers.Dropout(0.4, name="head_dropout")(x)
outputs = layers.Dense(
NUM_CLASSES,
activation="softmax",
name="predictions",
)(x)
model = keras.Model(inputs, outputs, name="EfficientNetB0_smartvision")
return model
effnet_model = build_efficientnetb0_model()
effnet_model.summary()
# ------------------------------------------------------------
# 5. TRAINING UTILITY (WEIGHTS-ONLY .weights.h5)
# ------------------------------------------------------------
def compile_and_train(
model,
save_name: str,
train_ds,
val_ds,
epochs: int,
lr: float,
initial_epoch: int = 0,
patience_es: int = 5,
patience_rlr: int = 2,
):
optimizer = keras.optimizers.Adam(learning_rate=lr)
model.compile(
optimizer=optimizer,
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
best_weights_path = os.path.join(
MODELS_DIR, f"{save_name}.weights.h5"
)
callbacks = [
keras.callbacks.ModelCheckpoint(
filepath=best_weights_path,
monitor="val_accuracy",
save_best_only=True,
save_weights_only=True,
mode="max",
verbose=1,
),
keras.callbacks.EarlyStopping(
monitor="val_accuracy",
patience=patience_es,
restore_best_weights=True,
verbose=1,
),
keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.5,
patience=patience_rlr,
min_lr=1e-6,
verbose=1,
),
]
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
initial_epoch=initial_epoch,
callbacks=callbacks,
)
return history, best_weights_path
# ------------------------------------------------------------
# 6. TWO-STAGE TRAINING
# ------------------------------------------------------------
MODEL_NAME = "efficientnetb0"
print("\n========== STAGE 1: TRAIN HEAD ONLY ==========\n")
history_stage1, effnet_stage1_best = compile_and_train(
effnet_model,
save_name=f"{MODEL_NAME}_stage1_best",
train_ds=train_ds,
val_ds=val_ds,
epochs=10,
lr=1e-3,
initial_epoch=0,
patience_es=5,
patience_rlr=2,
)
print("Stage 1 best weights saved at:", effnet_stage1_best)
print("\n========== STAGE 2: FINE-TUNE TOP LAYERS ==========\n")
# Get the EfficientNet base from the combined model
base_model = effnet_model.get_layer("efficientnetb0")
# Unfreeze top N layers
num_unfreeze = 80
for layer in base_model.layers[:-num_unfreeze]:
layer.trainable = False
for layer in base_model.layers[-num_unfreeze:]:
layer.trainable = True
if isinstance(layer, layers.BatchNormalization):
layer.trainable = False # keep BN frozen
initial_epoch_stage2 = len(history_stage1.history["accuracy"])
history_stage2, effnet_stage2_best = compile_and_train(
effnet_model,
save_name=f"{MODEL_NAME}_stage2_best",
train_ds=train_ds,
val_ds=val_ds,
epochs=30, # total (Stage1 + Stage2)
lr=5e-5,
initial_epoch=initial_epoch_stage2,
patience_es=5,
patience_rlr=2,
)
print("Stage 2 best weights saved at:", effnet_stage2_best)
print("πŸ‘‰ Use this file in Streamlit app:", effnet_stage2_best)
# ------------------------------------------------------------
# 7. EVALUATION + SAVE METRICS & CONFUSION MATRIX
# ------------------------------------------------------------
def evaluate_and_save(model, model_name, best_weights_path, test_ds, class_names):
print(f"\n===== EVALUATING {model_name.upper()} ON TEST SET =====")
model.load_weights(best_weights_path)
print(f"Loaded best weights from {best_weights_path}")
y_true = []
y_pred = []
all_probs = []
total_time = 0.0
total_images = 0
for images, labels in test_ds:
images_np = images.numpy()
bs = images_np.shape[0]
start = time.perf_counter()
probs = model.predict(images_np, verbose=0)
end = time.perf_counter()
total_time += (end - start)
total_images += bs
preds = np.argmax(probs, axis=1)
y_true.extend(labels.numpy())
y_pred.extend(preds)
all_probs.append(probs)
y_true = np.array(y_true)
y_pred = np.array(y_pred)
all_probs = np.concatenate(all_probs, axis=0)
accuracy = float((y_true == y_pred).mean())
precision, recall, f1, _ = precision_recall_fscore_support(
y_true, y_pred, average="weighted", zero_division=0
)
top5_correct = 0
for i, label in enumerate(y_true):
if label in np.argsort(all_probs[i])[-5:]:
top5_correct += 1
top5_acc = top5_correct / len(y_true)
time_per_image = total_time / total_images
images_per_second = 1.0 / time_per_image
temp_w = os.path.join(MODELS_DIR, f"{model_name}_temp_for_size.weights.h5")
model.save_weights(temp_w)
size_mb = os.path.getsize(temp_w) / (1024 * 1024)
os.remove(temp_w)
cm = confusion_matrix(y_true, y_pred)
print("\nClassification Report:")
print(
classification_report(
y_true, y_pred, target_names=class_names, zero_division=0
)
)
print(f"Test Accuracy : {accuracy:.4f}")
print(f"Weighted Precision : {precision:.4f}")
print(f"Weighted Recall : {recall:.4f}")
print(f"Weighted F1-score : {f1:.4f}")
print(f"Top-5 Accuracy : {top5_acc:.4f}")
print(f"Avg time per image : {time_per_image*1000:.2f} ms")
print(f"Images per second : {images_per_second:.2f}")
print(f"Model size (weights) : {size_mb:.2f} MB")
print(f"Num parameters : {model.count_params()}")
save_dir = os.path.join(METRICS_DIR, model_name)
os.makedirs(save_dir, exist_ok=True)
metrics = {
"model_name": model_name,
"accuracy": accuracy,
"precision_weighted": float(precision),
"recall_weighted": float(recall),
"f1_weighted": float(f1),
"top5_accuracy": float(top5_acc),
"avg_inference_time_sec": float(time_per_image),
"images_per_second": float(images_per_second),
"model_size_mb": float(size_mb),
"num_parameters": int(model.count_params()),
}
metrics_path = os.path.join(save_dir, "metrics.json")
cm_path = os.path.join(save_dir, "confusion_matrix.npy")
with open(metrics_path, "w") as f:
json.dump(metrics, f, indent=2)
np.save(cm_path, cm)
print(f"\nSaved metrics to : {metrics_path}")
print(f"Saved confusion matrix to: {cm_path}")
return metrics, cm
effnet_metrics, effnet_cm = evaluate_and_save(
effnet_model,
model_name="efficientnetb0_stage2",
best_weights_path=effnet_stage2_best,
test_ds=test_ds,
class_names=class_names,
)
print("\nβœ… EfficientNetB0 Model 4 pipeline complete.")
print("βœ… Use weights file in app:", effnet_stage2_best)