File size: 12,264 Bytes
ab1b163
 
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
0a12050
ab1b163
 
 
 
 
 
 
 
 
e996b22
ab1b163
0a12050
ab1b163
 
 
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
0a12050
ab1b163
 
 
 
e996b22
ab1b163
 
e996b22
 
 
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
ab1b163
e996b22
ab1b163
0a12050
ab1b163
 
 
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
0a12050
ab1b163
e996b22
 
 
ab1b163
e996b22
 
 
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a12050
e996b22
ab1b163
0a12050
e996b22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
ab1b163
 
e996b22
ab1b163
 
e996b22
ab1b163
 
 
e996b22
ab1b163
 
 
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
 
 
ab1b163
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
ab1b163
 
e996b22
ab1b163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e996b22
ab1b163
 
 
 
 
 
e996b22
ab1b163
e996b22
ab1b163
 
e996b22
ab1b163
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""3-stage LLM Council orchestration."""

from typing import List, Dict, Any, Tuple
from .openrouter import query_models_parallel, query_model, query_model_stream
from .config import COUNCIL_MODELS, CHAIRMAN_MODEL


async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
    """
    Stage 1: Collect individual responses from all council models.

    Args:
        user_query: The user's question

    Returns:
        List of dicts with 'model' and 'response' keys
    """
    print("STAGE 1: Collecting individual responses from council members...")
    messages = [{"role": "user", "content": user_query}]

    # Query all models in parallel
    responses = await query_models_parallel(COUNCIL_MODELS, messages)

    # Format results
    stage1_results = []
    for model, response in responses.items():
        if response is not None:  # Only include successful responses
            stage1_results.append({"model": model, "response": response.get("content", "")})

    print(f"STAGE 1 COMPLETE: Received {len(stage1_results)} responses.")
    return stage1_results


async def stage2_collect_rankings(
    user_query: str, stage1_results: List[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], Dict[str, str]]:
    """
    Stage 2: Each model ranks the anonymized responses.

    Args:
        user_query: The original user query
        stage1_results: Results from Stage 1

    Returns:
        Tuple of (rankings list, label_to_model mapping)
    """
    print("STAGE 2: Council members are ranking each other's responses...")
    # Create anonymized labels for responses (Response A, Response B, etc.)
    labels = [chr(65 + i) for i in range(len(stage1_results))]  # A, B, C, ...

    # Create mapping from label to model name
    label_to_model = {f"Response {label}": result["model"] for label, result in zip(labels, stage1_results)}

    # Build the ranking prompt
    responses_text = "\n\n".join(
        [f"Response {label}:\n{result['response']}" for label, result in zip(labels, stage1_results)]
    )

    ranking_prompt = f"""You are evaluating different responses to the following question:

Question: {user_query}

Here are the responses from different models (anonymized):

{responses_text}

Your task:
1. First, evaluate each response individually. For each response, explain what it does well and what it does poorly.
2. Then, at the very end of your response, provide a final ranking.

IMPORTANT: Your final ranking MUST be formatted EXACTLY as follows:
- Start with the line "FINAL RANKING:" (all caps, with colon)
- Then list the responses from best to worst as a numbered list
- Each line should be: number, period, space, then ONLY the response label (e.g., "1. Response A")
- Do not add any other text or explanations in the ranking section

Example of the correct format for your ENTIRE response:

Response A provides good detail on X but misses Y...
Response B is accurate but lacks depth on Z...
Response C offers the most comprehensive answer...

FINAL RANKING:
1. Response C
2. Response A
3. Response B

Now provide your evaluation and ranking:"""

    messages = [{"role": "user", "content": ranking_prompt}]

    # Get rankings from all council models in parallel
    responses = await query_models_parallel(COUNCIL_MODELS, messages)

    # Format results
    stage2_results = []
    for model, response in responses.items():
        if response is not None:
            full_text = response.get("content", "")
            parsed = parse_ranking_from_text(full_text)
            stage2_results.append({"model": model, "ranking": full_text, "parsed_ranking": parsed})

    print("STAGE 2 COMPLETE: Rankings collected.")
    return stage2_results, label_to_model


async def stage3_synthesize_final(
    user_query: str, stage1_results: List[Dict[str, Any]], stage2_results: List[Dict[str, Any]]
) -> Dict[str, Any]:
    """
    Stage 3: Chairman synthesizes final response.

    Args:
        user_query: The original user query
        stage1_results: Individual model responses from Stage 1
        stage2_results: Rankings from Stage 2

    Returns:
        Dict with 'model' and 'response' keys
    """
    print("STAGE 3: Chairman is synthesizing the final answer...")
    # Build comprehensive context for chairman
    stage1_text = "\n\n".join(
        [f"Model: {result['model']}\nResponse: {result['response']}" for result in stage1_results]
    )

    stage2_text = "\n\n".join(
        [f"Model: {result['model']}\nRanking: {result['ranking']}" for result in stage2_results]
    )

    chairman_prompt = f"""You are the Chairman of an LLM Council. Multiple AI models have provided responses to a user's question, and then ranked each other's responses.

Original Question: {user_query}

STAGE 1 - Individual Responses:
{stage1_text}

STAGE 2 - Peer Rankings:
{stage2_text}

Your task as Chairman is to synthesize all of this information into a single, comprehensive, accurate answer to the user's original question. Consider:
- The individual responses and their insights
- The peer rankings and what they reveal about response quality
- Any patterns of agreement or disagreement

Provide a clear, well-reasoned final answer that represents the council's collective wisdom:"""

    messages = [{"role": "user", "content": chairman_prompt}]

    # Query the chairman model
    response = await query_model(CHAIRMAN_MODEL, messages)

    if response is None:
        # Fallback if chairman fails
        print("STAGE 3 ERROR: Unable to generate final synthesis.")
        return {"model": CHAIRMAN_MODEL, "response": "Error: Unable to generate final synthesis."}

    print("STAGE 3 COMPLETE: Final answer synthesized.")
    return {"model": CHAIRMAN_MODEL, "response": response.get("content", "")}


async def stage3_synthesize_final_stream(
    user_query: str, stage1_results: List[Dict[str, Any]], stage2_results: List[Dict[str, Any]]
):
    """
    Stage 3: Chairman synthesizes final response (Streaming).
    Yields chunks of text.
    """
    print("STAGE 3: Chairman is synthesizing the final answer (Streaming)...")

    # Build comprehensive context for chairman
    stage1_text = "\n\n".join(
        [f"Model: {result['model']}\nResponse: {result['response']}" for result in stage1_results]
    )

    stage2_text = "\n\n".join(
        [f"Model: {result['model']}\nRanking: {result['ranking']}" for result in stage2_results]
    )

    chairman_prompt = f"""You are the Chairman of an LLM Council. Multiple AI models have provided responses to a user's question, and then ranked each other's responses.

Original Question: {user_query}

STAGE 1 - Individual Responses:
{stage1_text}

STAGE 2 - Peer Rankings:
{stage2_text}

Your task as Chairman is to synthesize all of this information into a single, comprehensive, accurate answer to the user's original question. Consider:
- The individual responses and their insights
- The peer rankings and what they reveal about response quality
- Any patterns of agreement or disagreement

Provide a clear, well-reasoned final answer that represents the council's collective wisdom:"""

    messages = [{"role": "user", "content": chairman_prompt}]

    # Stream the chairman model
    async for chunk in query_model_stream(CHAIRMAN_MODEL, messages):
        yield chunk

    print("STAGE 3 COMPLETE: Final answer stream finished.")


def parse_ranking_from_text(ranking_text: str) -> List[str]:
    """
    Parse the FINAL RANKING section from the model's response.

    Args:
        ranking_text: The full text response from the model

    Returns:
        List of response labels in ranked order
    """
    import re

    # Look for "FINAL RANKING:" section
    if "FINAL RANKING:" in ranking_text:
        # Extract everything after "FINAL RANKING:"
        parts = ranking_text.split("FINAL RANKING:")
        if len(parts) >= 2:
            ranking_section = parts[1]
            # Try to extract numbered list format (e.g., "1. Response A")
            # This pattern looks for: number, period, optional space, "Response X"
            numbered_matches = re.findall(r"\d+\.\s*Response [A-Z]", ranking_section)
            if numbered_matches:
                # Extract just the "Response X" part
                return [re.search(r"Response [A-Z]", m).group() for m in numbered_matches]

            # Fallback: Extract all "Response X" patterns in order
            matches = re.findall(r"Response [A-Z]", ranking_section)
            return matches

    # Fallback: try to find any "Response X" patterns in order
    matches = re.findall(r"Response [A-Z]", ranking_text)
    return matches


def calculate_aggregate_rankings(
    stage2_results: List[Dict[str, Any]], label_to_model: Dict[str, str]
) -> List[Dict[str, Any]]:
    """
    Calculate aggregate rankings across all models.

    Args:
        stage2_results: Rankings from each model
        label_to_model: Mapping from anonymous labels to model names

    Returns:
        List of dicts with model name and average rank, sorted best to worst
    """
    from collections import defaultdict

    # Track positions for each model
    model_positions = defaultdict(list)

    for ranking in stage2_results:
        ranking_text = ranking["ranking"]

        # Parse the ranking from the structured format
        parsed_ranking = parse_ranking_from_text(ranking_text)

        for position, label in enumerate(parsed_ranking, start=1):
            if label in label_to_model:
                model_name = label_to_model[label]
                model_positions[model_name].append(position)

    # Calculate average position for each model
    aggregate = []
    for model, positions in model_positions.items():
        if positions:
            avg_rank = sum(positions) / len(positions)
            aggregate.append(
                {"model": model, "average_rank": round(avg_rank, 2), "rankings_count": len(positions)}
            )

    # Sort by average rank (lower is better)
    aggregate.sort(key=lambda x: x["average_rank"])

    return aggregate


async def generate_conversation_title(user_query: str) -> str:
    """
    Generate a short title for a conversation based on the first user message.

    Args:
        user_query: The first user message

    Returns:
        A short title (3-5 words)
    """
    title_prompt = f"""Generate a very short title (3-5 words maximum) that summarizes the following question.
The title should be concise and descriptive. Do not use quotes or punctuation in the title.

Question: {user_query}

Title:"""

    messages = [{"role": "user", "content": title_prompt}]

    # Use gemini-2.5-flash for title generation (fast and cheap)
    response = await query_model("google/gemini-2.5-flash", messages, timeout=30.0)

    if response is None:
        # Fallback to a generic title
        return "New Conversation"

    title = response.get("content", "New Conversation").strip()

    # Clean up the title - remove quotes, limit length
    title = title.strip("\"'")

    # Truncate if too long
    if len(title) > 50:
        title = title[:47] + "..."

    return title


async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
    """
    Run the complete 3-stage council process.

    Args:
        user_query: The user's question

    Returns:
        Tuple of (stage1_results, stage2_results, stage3_result, metadata)
    """
    # Stage 1: Collect individual responses
    stage1_results = await stage1_collect_responses(user_query)

    # If no models responded successfully, return error
    if not stage1_results:
        return [], [], {"model": "error", "response": "All models failed to respond. Please try again."}, {}

    # Stage 2: Collect rankings
    stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results)

    # Calculate aggregate rankings
    aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)

    # Stage 3: Synthesize final answer
    stage3_result = await stage3_synthesize_final(user_query, stage1_results, stage2_results)

    # Prepare metadata
    metadata = {"label_to_model": label_to_model, "aggregate_rankings": aggregate_rankings}

    return stage1_results, stage2_results, stage3_result, metadata