Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import av | |
| import torchaudio | |
| import torch | |
| import comfy.model_management | |
| import folder_paths | |
| import os | |
| import io | |
| import json | |
| import random | |
| import hashlib | |
| import node_helpers | |
| import logging | |
| from comfy.cli_args import args | |
| from comfy.comfy_types import FileLocator | |
| class EmptyLatentAudio: | |
| def __init__(self): | |
| self.device = comfy.model_management.intermediate_device() | |
| def INPUT_TYPES(s): | |
| return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), | |
| }} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/audio" | |
| def generate(self, seconds, batch_size): | |
| length = round((seconds * 44100 / 2048) / 2) * 2 | |
| latent = torch.zeros([batch_size, 64, length], device=self.device) | |
| return ({"samples":latent, "type": "audio"}, ) | |
| class ConditioningStableAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), | |
| "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING","CONDITIONING") | |
| RETURN_NAMES = ("positive", "negative") | |
| FUNCTION = "append" | |
| CATEGORY = "conditioning" | |
| def append(self, positive, negative, seconds_start, seconds_total): | |
| positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) | |
| negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) | |
| return (positive, negative) | |
| class VAEEncodeAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "encode" | |
| CATEGORY = "latent/audio" | |
| def encode(self, vae, audio): | |
| sample_rate = audio["sample_rate"] | |
| if 44100 != sample_rate: | |
| waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) | |
| else: | |
| waveform = audio["waveform"] | |
| t = vae.encode(waveform.movedim(1, -1)) | |
| return ({"samples":t}, ) | |
| class VAEDecodeAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} | |
| RETURN_TYPES = ("AUDIO",) | |
| FUNCTION = "decode" | |
| CATEGORY = "latent/audio" | |
| def decode(self, vae, samples): | |
| audio = vae.decode(samples["samples"]).movedim(-1, 1) | |
| std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 | |
| std[std < 1.0] = 1.0 | |
| audio /= std | |
| return ({"waveform": audio, "sample_rate": 44100}, ) | |
| def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"): | |
| filename_prefix += self.prefix_append | |
| full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
| results: list[FileLocator] = [] | |
| # Prepare metadata dictionary | |
| metadata = {} | |
| if not args.disable_metadata: | |
| if prompt is not None: | |
| metadata["prompt"] = json.dumps(prompt) | |
| if extra_pnginfo is not None: | |
| for x in extra_pnginfo: | |
| metadata[x] = json.dumps(extra_pnginfo[x]) | |
| # Opus supported sample rates | |
| OPUS_RATES = [8000, 12000, 16000, 24000, 48000] | |
| for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): | |
| filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
| file = f"{filename_with_batch_num}_{counter:05}_.{format}" | |
| output_path = os.path.join(full_output_folder, file) | |
| # Use original sample rate initially | |
| sample_rate = audio["sample_rate"] | |
| # Handle Opus sample rate requirements | |
| if format == "opus": | |
| if sample_rate > 48000: | |
| sample_rate = 48000 | |
| elif sample_rate not in OPUS_RATES: | |
| # Find the next highest supported rate | |
| for rate in sorted(OPUS_RATES): | |
| if rate > sample_rate: | |
| sample_rate = rate | |
| break | |
| if sample_rate not in OPUS_RATES: # Fallback if still not supported | |
| sample_rate = 48000 | |
| # Resample if necessary | |
| if sample_rate != audio["sample_rate"]: | |
| waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) | |
| # Create output with specified format | |
| output_buffer = io.BytesIO() | |
| output_container = av.open(output_buffer, mode='w', format=format) | |
| # Set metadata on the container | |
| for key, value in metadata.items(): | |
| output_container.metadata[key] = value | |
| # Set up the output stream with appropriate properties | |
| if format == "opus": | |
| out_stream = output_container.add_stream("libopus", rate=sample_rate) | |
| if quality == "64k": | |
| out_stream.bit_rate = 64000 | |
| elif quality == "96k": | |
| out_stream.bit_rate = 96000 | |
| elif quality == "128k": | |
| out_stream.bit_rate = 128000 | |
| elif quality == "192k": | |
| out_stream.bit_rate = 192000 | |
| elif quality == "320k": | |
| out_stream.bit_rate = 320000 | |
| elif format == "mp3": | |
| out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) | |
| if quality == "V0": | |
| #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool | |
| out_stream.codec_context.qscale = 1 | |
| elif quality == "128k": | |
| out_stream.bit_rate = 128000 | |
| elif quality == "320k": | |
| out_stream.bit_rate = 320000 | |
| else: #format == "flac": | |
| out_stream = output_container.add_stream("flac", rate=sample_rate) | |
| frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo') | |
| frame.sample_rate = sample_rate | |
| frame.pts = 0 | |
| output_container.mux(out_stream.encode(frame)) | |
| # Flush encoder | |
| output_container.mux(out_stream.encode(None)) | |
| # Close containers | |
| output_container.close() | |
| # Write the output to file | |
| output_buffer.seek(0) | |
| with open(output_path, 'wb') as f: | |
| f.write(output_buffer.getbuffer()) | |
| results.append({ | |
| "filename": file, | |
| "subfolder": subfolder, | |
| "type": self.type | |
| }) | |
| counter += 1 | |
| return { "ui": { "audio": results } } | |
| class SaveAudio: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), | |
| "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), | |
| }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save_flac" | |
| OUTPUT_NODE = True | |
| CATEGORY = "audio" | |
| def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None): | |
| return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo) | |
| class SaveAudioMP3: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), | |
| "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), | |
| "quality": (["V0", "128k", "320k"], {"default": "V0"}), | |
| }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save_mp3" | |
| OUTPUT_NODE = True | |
| CATEGORY = "audio" | |
| def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"): | |
| return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) | |
| class SaveAudioOpus: | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_output_directory() | |
| self.type = "output" | |
| self.prefix_append = "" | |
| def INPUT_TYPES(s): | |
| return {"required": { "audio": ("AUDIO", ), | |
| "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), | |
| "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}), | |
| }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| RETURN_TYPES = () | |
| FUNCTION = "save_opus" | |
| OUTPUT_NODE = True | |
| CATEGORY = "audio" | |
| def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"): | |
| return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) | |
| class PreviewAudio(SaveAudio): | |
| def __init__(self): | |
| self.output_dir = folder_paths.get_temp_directory() | |
| self.type = "temp" | |
| self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"audio": ("AUDIO", ), }, | |
| "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
| } | |
| def f32_pcm(wav: torch.Tensor) -> torch.Tensor: | |
| """Convert audio to float 32 bits PCM format.""" | |
| if wav.dtype.is_floating_point: | |
| return wav | |
| elif wav.dtype == torch.int16: | |
| return wav.float() / (2 ** 15) | |
| elif wav.dtype == torch.int32: | |
| return wav.float() / (2 ** 31) | |
| raise ValueError(f"Unsupported wav dtype: {wav.dtype}") | |
| def load(filepath: str) -> tuple[torch.Tensor, int]: | |
| with av.open(filepath) as af: | |
| if not af.streams.audio: | |
| raise ValueError("No audio stream found in the file.") | |
| stream = af.streams.audio[0] | |
| sr = stream.codec_context.sample_rate | |
| n_channels = stream.channels | |
| frames = [] | |
| length = 0 | |
| for frame in af.decode(streams=stream.index): | |
| buf = torch.from_numpy(frame.to_ndarray()) | |
| if buf.shape[0] != n_channels: | |
| buf = buf.view(-1, n_channels).t() | |
| frames.append(buf) | |
| length += buf.shape[1] | |
| if not frames: | |
| raise ValueError("No audio frames decoded.") | |
| wav = torch.cat(frames, dim=1) | |
| wav = f32_pcm(wav) | |
| return wav, sr | |
| class LoadAudio: | |
| def INPUT_TYPES(s): | |
| input_dir = folder_paths.get_input_directory() | |
| files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) | |
| return {"required": {"audio": (sorted(files), {"audio_upload": True})}} | |
| CATEGORY = "audio" | |
| RETURN_TYPES = ("AUDIO", ) | |
| FUNCTION = "load" | |
| def load(self, audio): | |
| audio_path = folder_paths.get_annotated_filepath(audio) | |
| waveform, sample_rate = load(audio_path) | |
| audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} | |
| return (audio, ) | |
| def IS_CHANGED(s, audio): | |
| image_path = folder_paths.get_annotated_filepath(audio) | |
| m = hashlib.sha256() | |
| with open(image_path, 'rb') as f: | |
| m.update(f.read()) | |
| return m.digest().hex() | |
| def VALIDATE_INPUTS(s, audio): | |
| if not folder_paths.exists_annotated_filepath(audio): | |
| return "Invalid audio file: {}".format(audio) | |
| return True | |
| class RecordAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": {"audio": ("AUDIO_RECORD", {})}} | |
| CATEGORY = "audio" | |
| RETURN_TYPES = ("AUDIO", ) | |
| FUNCTION = "load" | |
| def load(self, audio): | |
| audio_path = folder_paths.get_annotated_filepath(audio) | |
| waveform, sample_rate = torchaudio.load(audio_path) | |
| audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} | |
| return (audio, ) | |
| class TrimAudioDuration: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "audio": ("AUDIO",), | |
| "start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}), | |
| "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}), | |
| }, | |
| } | |
| FUNCTION = "trim" | |
| RETURN_TYPES = ("AUDIO",) | |
| CATEGORY = "audio" | |
| DESCRIPTION = "Trim audio tensor into chosen time range." | |
| def trim(self, audio, start_index, duration): | |
| waveform = audio["waveform"] | |
| sample_rate = audio["sample_rate"] | |
| audio_length = waveform.shape[-1] | |
| if start_index < 0: | |
| start_frame = audio_length + int(round(start_index * sample_rate)) | |
| else: | |
| start_frame = int(round(start_index * sample_rate)) | |
| start_frame = max(0, min(start_frame, audio_length - 1)) | |
| end_frame = start_frame + int(round(duration * sample_rate)) | |
| end_frame = max(0, min(end_frame, audio_length)) | |
| if start_frame >= end_frame: | |
| raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") | |
| return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},) | |
| class SplitAudioChannels: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "audio": ("AUDIO",), | |
| }} | |
| RETURN_TYPES = ("AUDIO", "AUDIO") | |
| RETURN_NAMES = ("left", "right") | |
| FUNCTION = "separate" | |
| CATEGORY = "audio" | |
| DESCRIPTION = "Separates the audio into left and right channels." | |
| def separate(self, audio): | |
| waveform = audio["waveform"] | |
| sample_rate = audio["sample_rate"] | |
| if waveform.shape[1] != 2: | |
| raise ValueError("AudioSplit: Input audio has only one channel.") | |
| left_channel = waveform[..., 0:1, :] | |
| right_channel = waveform[..., 1:2, :] | |
| return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) | |
| def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): | |
| if sample_rate_1 != sample_rate_2: | |
| if sample_rate_1 > sample_rate_2: | |
| waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1) | |
| output_sample_rate = sample_rate_1 | |
| logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.") | |
| else: | |
| waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2) | |
| output_sample_rate = sample_rate_2 | |
| logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.") | |
| else: | |
| output_sample_rate = sample_rate_1 | |
| return waveform_1, waveform_2, output_sample_rate | |
| class AudioConcat: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "audio1": ("AUDIO",), | |
| "audio2": ("AUDIO",), | |
| "direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}), | |
| }} | |
| RETURN_TYPES = ("AUDIO",) | |
| FUNCTION = "concat" | |
| CATEGORY = "audio" | |
| DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction." | |
| def concat(self, audio1, audio2, direction): | |
| waveform_1 = audio1["waveform"] | |
| waveform_2 = audio2["waveform"] | |
| sample_rate_1 = audio1["sample_rate"] | |
| sample_rate_2 = audio2["sample_rate"] | |
| if waveform_1.shape[1] == 1: | |
| waveform_1 = waveform_1.repeat(1, 2, 1) | |
| logging.info("AudioConcat: Converted mono audio1 to stereo by duplicating the channel.") | |
| if waveform_2.shape[1] == 1: | |
| waveform_2 = waveform_2.repeat(1, 2, 1) | |
| logging.info("AudioConcat: Converted mono audio2 to stereo by duplicating the channel.") | |
| waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2) | |
| if direction == 'after': | |
| concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2) | |
| elif direction == 'before': | |
| concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) | |
| return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},) | |
| class AudioMerge: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "audio1": ("AUDIO",), | |
| "audio2": ("AUDIO",), | |
| "merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}), | |
| }, | |
| } | |
| FUNCTION = "merge" | |
| RETURN_TYPES = ("AUDIO",) | |
| CATEGORY = "audio" | |
| DESCRIPTION = "Combine two audio tracks by overlaying their waveforms." | |
| def merge(self, audio1, audio2, merge_method): | |
| waveform_1 = audio1["waveform"] | |
| waveform_2 = audio2["waveform"] | |
| sample_rate_1 = audio1["sample_rate"] | |
| sample_rate_2 = audio2["sample_rate"] | |
| waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2) | |
| length_1 = waveform_1.shape[-1] | |
| length_2 = waveform_2.shape[-1] | |
| if length_2 > length_1: | |
| logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.") | |
| waveform_2 = waveform_2[..., :length_1] | |
| elif length_2 < length_1: | |
| logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.") | |
| pad_shape = list(waveform_2.shape) | |
| pad_shape[-1] = length_1 - length_2 | |
| pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device) | |
| waveform_2 = torch.cat((waveform_2, pad_tensor), dim=-1) | |
| if merge_method == "add": | |
| waveform = waveform_1 + waveform_2 | |
| elif merge_method == "subtract": | |
| waveform = waveform_1 - waveform_2 | |
| elif merge_method == "multiply": | |
| waveform = waveform_1 * waveform_2 | |
| elif merge_method == "mean": | |
| waveform = (waveform_1 + waveform_2) / 2 | |
| max_val = waveform.abs().max() | |
| if max_val > 1.0: | |
| waveform = waveform / max_val | |
| return ({"waveform": waveform, "sample_rate": output_sample_rate},) | |
| class AudioAdjustVolume: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "audio": ("AUDIO",), | |
| "volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}), | |
| }} | |
| RETURN_TYPES = ("AUDIO",) | |
| FUNCTION = "adjust_volume" | |
| CATEGORY = "audio" | |
| def adjust_volume(self, audio, volume): | |
| if volume == 0: | |
| return (audio,) | |
| waveform = audio["waveform"] | |
| sample_rate = audio["sample_rate"] | |
| gain = 10 ** (volume / 20) | |
| waveform = waveform * gain | |
| return ({"waveform": waveform, "sample_rate": sample_rate},) | |
| class EmptyAudio: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}), | |
| "sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}), | |
| "channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}), | |
| }} | |
| RETURN_TYPES = ("AUDIO",) | |
| FUNCTION = "create_empty_audio" | |
| CATEGORY = "audio" | |
| def create_empty_audio(self, duration, sample_rate, channels): | |
| num_samples = int(round(duration * sample_rate)) | |
| waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) | |
| return ({"waveform": waveform, "sample_rate": sample_rate},) | |
| NODE_CLASS_MAPPINGS = { | |
| "EmptyLatentAudio": EmptyLatentAudio, | |
| "VAEEncodeAudio": VAEEncodeAudio, | |
| "VAEDecodeAudio": VAEDecodeAudio, | |
| "SaveAudio": SaveAudio, | |
| "SaveAudioMP3": SaveAudioMP3, | |
| "SaveAudioOpus": SaveAudioOpus, | |
| "LoadAudio": LoadAudio, | |
| "PreviewAudio": PreviewAudio, | |
| "ConditioningStableAudio": ConditioningStableAudio, | |
| "RecordAudio": RecordAudio, | |
| "TrimAudioDuration": TrimAudioDuration, | |
| "SplitAudioChannels": SplitAudioChannels, | |
| "AudioConcat": AudioConcat, | |
| "AudioMerge": AudioMerge, | |
| "AudioAdjustVolume": AudioAdjustVolume, | |
| "EmptyAudio": EmptyAudio, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "EmptyLatentAudio": "Empty Latent Audio", | |
| "VAEEncodeAudio": "VAE Encode Audio", | |
| "VAEDecodeAudio": "VAE Decode Audio", | |
| "PreviewAudio": "Preview Audio", | |
| "LoadAudio": "Load Audio", | |
| "SaveAudio": "Save Audio (FLAC)", | |
| "SaveAudioMP3": "Save Audio (MP3)", | |
| "SaveAudioOpus": "Save Audio (Opus)", | |
| "RecordAudio": "Record Audio", | |
| "TrimAudioDuration": "Trim Audio Duration", | |
| "SplitAudioChannels": "Split Audio Channels", | |
| "AudioConcat": "Audio Concat", | |
| "AudioMerge": "Audio Merge", | |
| "AudioAdjustVolume": "Audio Adjust Volume", | |
| "EmptyAudio": "Empty Audio", | |
| } | |