Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
-
import zipfile
|
| 7 |
-
import os
|
| 8 |
-
import re
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
###############################################################################
|
| 12 |
-
# 1) LOAD MISTRAL IN 4-BIT (MUCH FASTER)
|
| 13 |
-
###############################################################################
|
| 14 |
-
bnb_config = BitsAndBytesConfig(
|
| 15 |
-
load_in_4bit=True,
|
| 16 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 17 |
-
bnb_4bit_use_double_quant=True,
|
| 18 |
-
bnb_4bit_quant_type="nf4",
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 22 |
-
|
| 23 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
-
model_name,
|
| 26 |
-
quantization_config=bnb_config,
|
| 27 |
-
device_map="auto"
|
| 28 |
-
)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
llm = pipeline(
|
| 31 |
"text-generation",
|
| 32 |
-
model=
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
temperature=0.4,
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")
|
| 42 |
|
| 43 |
-
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
zip_path = "/app/provinces.zip"
|
| 47 |
extract_folder = "/app/provinces_texts"
|
| 48 |
|
|
@@ -50,22 +30,26 @@ if os.path.exists(extract_folder):
|
|
| 50 |
import shutil
|
| 51 |
shutil.rmtree(extract_folder)
|
| 52 |
|
| 53 |
-
with zipfile.ZipFile(zip_path, "r") as
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
def parse_metadata_and_content(raw):
|
| 59 |
if "CONTENT:" not in raw:
|
| 60 |
-
raise ValueError("Missing CONTENT
|
| 61 |
-
header, content = raw.split("CONTENT:", 1)
|
| 62 |
|
|
|
|
| 63 |
metadata = {}
|
| 64 |
pdfs = []
|
|
|
|
| 65 |
for line in header.split("\n"):
|
| 66 |
-
if ":" in line and not line.
|
| 67 |
-
|
| 68 |
-
metadata[
|
| 69 |
elif line.strip().startswith("-"):
|
| 70 |
pdfs.append(line.strip())
|
| 71 |
|
|
@@ -75,16 +59,16 @@ def parse_metadata_and_content(raw):
|
|
| 75 |
return metadata, content.strip()
|
| 76 |
|
| 77 |
documents = []
|
| 78 |
-
|
| 79 |
for root, dirs, files in os.walk(extract_folder):
|
| 80 |
for filename in files:
|
| 81 |
-
if filename.
|
| 82 |
continue
|
| 83 |
-
|
|
|
|
| 84 |
try:
|
| 85 |
-
|
| 86 |
-
raw = f.read()
|
| 87 |
metadata, content = parse_metadata_and_content(raw)
|
|
|
|
| 88 |
for p in [x.strip() for x in content.split("\n\n") if x.strip()]:
|
| 89 |
documents.append({
|
| 90 |
"source_title": metadata.get("SOURCE_TITLE", "Unknown"),
|
|
@@ -94,141 +78,128 @@ for root, dirs, files in os.walk(extract_folder):
|
|
| 94 |
"pdf_links": metadata.get("PDF_LINKS", ""),
|
| 95 |
"text": p
|
| 96 |
})
|
|
|
|
| 97 |
except Exception as e:
|
| 98 |
-
print("
|
| 99 |
|
| 100 |
-
|
| 101 |
-
# 4) EMBEDDINGS + DATAFRAME
|
| 102 |
-
###############################################################################
|
| 103 |
-
texts = [d["text"] for d in documents]
|
| 104 |
-
embs = embedding_model.encode(texts).astype("float16")
|
| 105 |
|
|
|
|
|
|
|
|
|
|
| 106 |
df = pd.DataFrame(documents)
|
| 107 |
-
df["
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
def retrieve_with_pandas(query, province=None, top_k=2):
|
| 113 |
-
|
| 114 |
|
| 115 |
-
subset = df if province is None else df[df["province"] == province]
|
| 116 |
|
|
|
|
| 117 |
subset["Similarity"] = subset["Embedding"].apply(
|
| 118 |
-
lambda x: np.dot(
|
| 119 |
-
(np.linalg.norm(
|
| 120 |
)
|
| 121 |
|
| 122 |
return subset.sort_values("Similarity", ascending=False).head(top_k)
|
| 123 |
|
| 124 |
-
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
def detect_province(
|
| 128 |
provinces = {
|
| 129 |
-
"yukon": "Yukon",
|
| 130 |
-
"
|
| 131 |
-
"bc": "British Columbia",
|
| 132 |
-
"british columbia": "British Columbia",
|
| 133 |
-
"manitoba": "Manitoba",
|
| 134 |
"newfoundland": "Newfoundland and Labrador",
|
| 135 |
-
"
|
| 136 |
-
"
|
| 137 |
-
"
|
| 138 |
-
"
|
| 139 |
-
"
|
| 140 |
-
"prince edward island": "Prince Edward Island",
|
| 141 |
-
"quebec": "Quebec",
|
| 142 |
-
"new brunswick": "New Brunswick",
|
| 143 |
-
"nb": "New Brunswick",
|
| 144 |
-
"nova scotia": "Nova Scotia",
|
| 145 |
-
"nunavut": "Nunavut",
|
| 146 |
-
"nwt": "Northwest Territories",
|
| 147 |
-
"northwest territories": "Northwest Territories",
|
| 148 |
}
|
| 149 |
-
q =
|
| 150 |
-
for
|
| 151 |
-
if
|
| 152 |
-
return
|
| 153 |
return None
|
| 154 |
|
| 155 |
-
|
| 156 |
-
#
|
| 157 |
-
|
| 158 |
def is_disallowed(q):
|
| 159 |
-
banned = ["kill", "suicide", "
|
| 160 |
return any(b in q.lower() for b in banned)
|
| 161 |
|
| 162 |
def is_off_topic(q):
|
| 163 |
-
keys = [
|
| 164 |
-
"tenant","landlord","rent","evict","lease",
|
| 165 |
-
"deposit","tenancy","rental","apartment",
|
| 166 |
-
"unit","heating","notice","repair","pets"
|
| 167 |
-
]
|
| 168 |
return not any(k in q.lower() for k in keys)
|
| 169 |
|
| 170 |
-
|
| 171 |
-
#
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
def generate_with_rag(query):
|
| 174 |
if is_disallowed(query):
|
| 175 |
-
return "Sorry — I can’t help with harmful
|
|
|
|
| 176 |
if is_off_topic(query):
|
| 177 |
-
return "Sorry — I
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
-
context = " ".join(
|
| 183 |
|
| 184 |
prompt = f"""
|
| 185 |
-
Use
|
| 186 |
-
If the context does not contain the answer, say so.
|
| 187 |
-
Answer in a simple, conversational way.
|
| 188 |
|
| 189 |
Context:
|
| 190 |
{context}
|
| 191 |
|
| 192 |
-
Question:
|
| 193 |
-
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
out = llm(prompt)[0]["generated_text"]
|
| 197 |
-
answer = out.split("Answer:", 1)[-1].strip()
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
for _, r in top_docs.iterrows():
|
| 202 |
-
meta += (
|
| 203 |
-
f"- **Province:** {r['province']}\n"
|
| 204 |
-
f" Source: {r['source_title']} (Updated {r['last_updated']})\n"
|
| 205 |
-
f" URL: {r['url']}\n"
|
| 206 |
-
)
|
| 207 |
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
# 9) GRADIO CHAT — INTRO ONLY ONCE
|
| 212 |
-
###############################################################################
|
| 213 |
-
INTRO = (
|
| 214 |
-
"👋 **Welcome!** I'm a Canadian rental housing assistant.\n\n"
|
| 215 |
-
"I can help you find and explain information from tenancy laws across all provinces.\n"
|
| 216 |
-
"I am **not a lawyer** — this is not legal advice.\n\n"
|
| 217 |
-
"What would you like to know?"
|
| 218 |
-
)
|
| 219 |
|
|
|
|
|
|
|
|
|
|
| 220 |
def start_chat():
|
| 221 |
return [(None, INTRO)]
|
| 222 |
|
| 223 |
-
def respond(
|
| 224 |
-
answer = generate_with_rag(
|
| 225 |
-
history.append((
|
| 226 |
-
return history
|
| 227 |
|
| 228 |
with gr.Blocks() as demo:
|
| 229 |
chatbot = gr.Chatbot(value=start_chat())
|
| 230 |
-
|
| 231 |
-
|
|
|
|
| 232 |
|
| 233 |
-
|
| 234 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
+
import zipfile, os, re, torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# -----------------------------
|
| 9 |
+
# Load Mistral (FP16, GPU if available)
|
| 10 |
+
# -----------------------------
|
| 11 |
llm = pipeline(
|
| 12 |
"text-generation",
|
| 13 |
+
model="mistralai/Mistral-7B-Instruct-v0.2",
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
device_map="auto"
|
|
|
|
| 16 |
)
|
| 17 |
|
| 18 |
+
# -----------------------------
|
| 19 |
+
# Load embedding model
|
| 20 |
+
# -----------------------------
|
| 21 |
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")
|
| 22 |
|
| 23 |
+
# -----------------------------
|
| 24 |
+
# Extract ZIP with provincial legal texts
|
| 25 |
+
# -----------------------------
|
| 26 |
zip_path = "/app/provinces.zip"
|
| 27 |
extract_folder = "/app/provinces_texts"
|
| 28 |
|
|
|
|
| 30 |
import shutil
|
| 31 |
shutil.rmtree(extract_folder)
|
| 32 |
|
| 33 |
+
with zipfile.ZipFile(zip_path, "r") as z:
|
| 34 |
+
z.extractall(extract_folder)
|
| 35 |
|
| 36 |
+
date_pattern = re.compile(r"(\d{4}[-_]\d{2}[-_]\d{2})")
|
| 37 |
|
| 38 |
+
# -----------------------------
|
| 39 |
+
# Parse documents
|
| 40 |
+
# -----------------------------
|
| 41 |
def parse_metadata_and_content(raw):
|
| 42 |
if "CONTENT:" not in raw:
|
| 43 |
+
raise ValueError("Missing CONTENT block")
|
|
|
|
| 44 |
|
| 45 |
+
header, content = raw.split("CONTENT:", 1)
|
| 46 |
metadata = {}
|
| 47 |
pdfs = []
|
| 48 |
+
|
| 49 |
for line in header.split("\n"):
|
| 50 |
+
if ":" in line and not line.startswith("-"):
|
| 51 |
+
k, v = line.split(":", 1)
|
| 52 |
+
metadata[k.strip().upper()] = v.strip()
|
| 53 |
elif line.strip().startswith("-"):
|
| 54 |
pdfs.append(line.strip())
|
| 55 |
|
|
|
|
| 59 |
return metadata, content.strip()
|
| 60 |
|
| 61 |
documents = []
|
|
|
|
| 62 |
for root, dirs, files in os.walk(extract_folder):
|
| 63 |
for filename in files:
|
| 64 |
+
if not filename.endswith(".txt") or filename.startswith("._"):
|
| 65 |
continue
|
| 66 |
+
|
| 67 |
+
path = os.path.join(root, filename)
|
| 68 |
try:
|
| 69 |
+
raw = open(path, "r", encoding="latin-1").read()
|
|
|
|
| 70 |
metadata, content = parse_metadata_and_content(raw)
|
| 71 |
+
|
| 72 |
for p in [x.strip() for x in content.split("\n\n") if x.strip()]:
|
| 73 |
documents.append({
|
| 74 |
"source_title": metadata.get("SOURCE_TITLE", "Unknown"),
|
|
|
|
| 78 |
"pdf_links": metadata.get("PDF_LINKS", ""),
|
| 79 |
"text": p
|
| 80 |
})
|
| 81 |
+
|
| 82 |
except Exception as e:
|
| 83 |
+
print("Skipped:", path, e)
|
| 84 |
|
| 85 |
+
print("Loaded paragraphs:", len(documents))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# -----------------------------
|
| 88 |
+
# Build embeddings dataframe
|
| 89 |
+
# -----------------------------
|
| 90 |
df = pd.DataFrame(documents)
|
| 91 |
+
texts = df["text"].tolist()
|
| 92 |
+
embeddings = embedding_model.encode(texts).astype("float16")
|
| 93 |
|
| 94 |
+
df["Embedding"] = list(embeddings)
|
| 95 |
+
print("Embedding index ready:", len(df))
|
| 96 |
+
|
| 97 |
+
# -----------------------------
|
| 98 |
+
# Retrieval
|
| 99 |
+
# -----------------------------
|
| 100 |
def retrieve_with_pandas(query, province=None, top_k=2):
|
| 101 |
+
query_emb = embedding_model.encode([query])[0]
|
| 102 |
|
| 103 |
+
subset = df if province is None else df[df["province"] == province]
|
| 104 |
|
| 105 |
+
subset = subset.copy()
|
| 106 |
subset["Similarity"] = subset["Embedding"].apply(
|
| 107 |
+
lambda x: np.dot(query_emb, x) /
|
| 108 |
+
(np.linalg.norm(query_emb) * np.linalg.norm(x))
|
| 109 |
)
|
| 110 |
|
| 111 |
return subset.sort_values("Similarity", ascending=False).head(top_k)
|
| 112 |
|
| 113 |
+
# -----------------------------
|
| 114 |
+
# Province detection
|
| 115 |
+
# -----------------------------
|
| 116 |
+
def detect_province(q):
|
| 117 |
provinces = {
|
| 118 |
+
"yukon": "Yukon", "alberta": "Alberta", "bc": "British Columbia",
|
| 119 |
+
"british columbia": "British Columbia", "manitoba": "Manitoba",
|
|
|
|
|
|
|
|
|
|
| 120 |
"newfoundland": "Newfoundland and Labrador",
|
| 121 |
+
"saskatchewan": "Saskatchewan", "sask": "Saskatchewan",
|
| 122 |
+
"ontario": "Ontario", "pei": "Prince Edward Island",
|
| 123 |
+
"quebec": "Quebec", "new brunswick": "New Brunswick",
|
| 124 |
+
"nova scotia": "Nova Scotia", "nunavut": "Nunavut",
|
| 125 |
+
"northwest territories": "Northwest Territories"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
}
|
| 127 |
+
q = q.lower()
|
| 128 |
+
for key, prov in provinces.items():
|
| 129 |
+
if key in q:
|
| 130 |
+
return prov
|
| 131 |
return None
|
| 132 |
|
| 133 |
+
# -----------------------------
|
| 134 |
+
# Filters
|
| 135 |
+
# -----------------------------
|
| 136 |
def is_disallowed(q):
|
| 137 |
+
banned = ["kill", "suicide", "bomb", "weapon", "harm yourself"]
|
| 138 |
return any(b in q.lower() for b in banned)
|
| 139 |
|
| 140 |
def is_off_topic(q):
|
| 141 |
+
keys = ["tenant","landlord","rent","evict","lease","repair","notice","unit"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
return not any(k in q.lower() for k in keys)
|
| 143 |
|
| 144 |
+
# -----------------------------
|
| 145 |
+
# Intro (sent once)
|
| 146 |
+
# -----------------------------
|
| 147 |
+
INTRO = (
|
| 148 |
+
"Hi! I'm a Canadian rental housing assistant. I help summarize and explain "
|
| 149 |
+
"information from Residential Tenancies Acts across Canada.\n\n"
|
| 150 |
+
"**Note:** I'm not a lawyer — this is not legal advice.\n\n"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# -----------------------------
|
| 154 |
+
# RAG Generation
|
| 155 |
+
# -----------------------------
|
| 156 |
def generate_with_rag(query):
|
| 157 |
if is_disallowed(query):
|
| 158 |
+
return "Sorry — I can’t help with harmful topics."
|
| 159 |
+
|
| 160 |
if is_off_topic(query):
|
| 161 |
+
return "Sorry — I only answer questions about Canadian tenancy law."
|
| 162 |
+
|
| 163 |
+
prov = detect_province(query)
|
| 164 |
+
docs = retrieve_with_pandas(query, province=prov, top_k=2)
|
| 165 |
|
| 166 |
+
if len(docs) == 0:
|
| 167 |
+
return "I couldn’t find anything relevant in the tenancy database."
|
| 168 |
|
| 169 |
+
context = " ".join(docs["text"].tolist())
|
| 170 |
|
| 171 |
prompt = f"""
|
| 172 |
+
Use only the context below. Do NOT invent laws.
|
|
|
|
|
|
|
| 173 |
|
| 174 |
Context:
|
| 175 |
{context}
|
| 176 |
|
| 177 |
+
Question:
|
| 178 |
+
{query}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
Answer conversationally:
|
| 181 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
out = llm(prompt, max_new_tokens=150)[0]["generated_text"]
|
| 184 |
+
answer = out.split("Answer conversationally:", 1)[-1].strip()
|
| 185 |
|
| 186 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
# -----------------------------
|
| 189 |
+
# Gradio Chat (Intro only once)
|
| 190 |
+
# -----------------------------
|
| 191 |
def start_chat():
|
| 192 |
return [(None, INTRO)]
|
| 193 |
|
| 194 |
+
def respond(msg, history):
|
| 195 |
+
answer = generate_with_rag(msg)
|
| 196 |
+
history.append((msg, answer))
|
| 197 |
+
return history
|
| 198 |
|
| 199 |
with gr.Blocks() as demo:
|
| 200 |
chatbot = gr.Chatbot(value=start_chat())
|
| 201 |
+
inp = gr.Textbox(label="Ask a question:")
|
| 202 |
+
|
| 203 |
+
inp.submit(respond, [inp, chatbot], chatbot)
|
| 204 |
|
| 205 |
+
demo.launch(share=True)
|
|
|