SMB-RAD-Encoder-v1 / modeling_smb_vision.py
zekaic's picture
Upload folder using huggingface_hub
f94c6d3 verified
# coding=utf-8
# Copyright 2025 The SMB Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Callable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.activations import ACT2FN
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs
from .configuration_smb_vision import (
SMBVisionConfig,
SMBVisionPredictorConfig,
SMBVisionModelConfig,
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
query.dtype
)
attn_weights = nn.functional.dropout(
attn_weights, p=dropout, training=module.training
)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class SMBVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state)))
class SMBVisionPatchEmbed(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.in_channels = config.in_channels
self.embed_dim = config.hidden_size
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
for in_channels in [1, 3, 4]:
setattr(
self,
f"proj_c{in_channels}",
nn.Conv3d(
in_channels,
self.embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=True,
),
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj_c1.weight.dtype
if self.in_channels == 1: # grayscale
hidden_states = hidden_states.view(
-1, 1, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj_c1(hidden_states.to(dtype=target_dtype)).view(
-1, self.embed_dim
)
elif self.in_channels == 3: # rgb
hidden_states = hidden_states.view(
-1, 3, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj_c3(hidden_states.to(dtype=target_dtype)).view(
-1, self.embed_dim
)
elif self.in_channels == 4: # multi sequence
hidden_states = hidden_states.view(
-1, 4, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj_c4(hidden_states.to(dtype=target_dtype)).view(
-1, self.embed_dim
)
else:
raise ValueError(f"Unsupported number of channels: {self.in_channels}")
return hidden_states
class SMBVisionRotaryEmbedding(nn.Module):
inv_freq: torch.Tensor # fix linting for `register_buffer`
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class SMBVisionPatchMerger(nn.Module):
def __init__(self, config, use_postshuffle_norm=False) -> None:
super().__init__()
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2)
self.use_postshuffle_norm = use_postshuffle_norm
self.norm = nn.LayerNorm(
self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6
)
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size)
self.act_fn = nn.GELU()
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.norm(
x.contiguous().view(-1, self.hidden_size)
if self.use_postshuffle_norm
else x
).view(-1, self.hidden_size)
x = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
return x
def apply_rotary_pos_emb_vision(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
orig_q_dtype = q.dtype
orig_k_dtype = k.dtype
q, k = q.float(), k.float()
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
q_embed = q_embed.to(orig_q_dtype)
k_embed = k_embed.to(orig_k_dtype)
return q_embed, k_embed
class SMBVisionAttention(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.dim // self.num_heads
self.num_key_value_groups = 1 # needed for eager attention
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
self.proj = nn.Linear(self.dim, self.dim)
self.scaling = self.head_dim**-0.5
self.config = config
self.attention_dropout = 0.0
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
query_states, key_states, value_states = (
self.qkv(hidden_states)
.reshape(seq_length, 3, self.num_heads, -1)
.permute(1, 0, 2, 3)
.unbind(0)
)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(
query_states, key_states, cos, sin
)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[
self.config._attn_implementation
]
if self.config._attn_implementation == "flash_attention_2":
# Flash Attention 2: Use cu_seqlens for variable length attention
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask=None,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
cu_seq_lens_q=cu_seqlens,
cu_seq_lens_k=cu_seqlens,
max_length_q=max_seqlen,
max_length_k=max_seqlen,
is_causal=False,
**kwargs,
)
else:
# Other implementations: Process each chunk separately
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2)
for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
attention_interface(
self,
q,
k,
v,
attention_mask=None,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
is_causal=False,
**kwargs,
)[0]
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1).contiguous()
attn_output = self.proj(attn_output)
return attn_output
class SMBVisionBlock(GradientCheckpointingLayer):
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6)
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6)
self.attn = SMBVisionAttention(config=config)
self.mlp = SMBVisionMLP(config=config)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
class SMBVisionEncoder(PreTrainedModel):
config: SMBVisionConfig
_no_split_modules = ["SMBVisionBlock"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
_supports_attention_backend = True
def __init__(self, config, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.spatial_merge_size = config.spatial_merge_size
self.patch_size = config.patch_size
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
self.patch_embed = SMBVisionPatchEmbed(
config=config,
)
self.pos_embed = nn.Embedding(
config.num_position_embeddings, config.hidden_size
)
self.num_grid_per_side = int(config.num_position_embeddings**0.5)
head_dim = config.hidden_size // config.num_heads
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[SMBVisionBlock(config) for _ in range(config.depth)]
)
self.merger = SMBVisionPatchMerger(
config=config,
use_postshuffle_norm=False,
)
self.deepstack_visual_indexes = config.deepstack_visual_indexes
self.deepstack_merger_list = nn.ModuleList(
[
SMBVisionPatchMerger(
config=config,
use_postshuffle_norm=True,
)
for _ in range(len(config.deepstack_visual_indexes))
]
)
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
merge_size = self.spatial_merge_size
max_hw = int(grid_thw[:, 1:].max().item())
freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
device = freq_table.device
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)
offset = 0
for num_frames, height, width in grid_thw:
merged_h, merged_w = height // merge_size, width // merge_size
block_rows = torch.arange(merged_h, device=device) # block row indices
block_cols = torch.arange(merged_w, device=device) # block col indices
intra_row = torch.arange(
merge_size, device=device
) # intra-block row offsets
intra_col = torch.arange(
merge_size, device=device
) # intra-block col offsets
# Compute full-resolution positions
row_idx = (
block_rows[:, None, None, None] * merge_size
+ intra_row[None, None, :, None]
)
col_idx = (
block_cols[None, :, None, None] * merge_size
+ intra_col[None, None, None, :]
)
row_idx = row_idx.expand(
merged_h, merged_w, merge_size, merge_size
).reshape(-1)
col_idx = col_idx.expand(
merged_h, merged_w, merge_size, merge_size
).reshape(-1)
coords = torch.stack((row_idx, col_idx), dim=-1)
if num_frames > 1:
coords = coords.repeat(num_frames, 1)
num_tokens = coords.shape[0]
pos_ids[offset : offset + num_tokens] = coords
offset += num_tokens
embeddings = freq_table[pos_ids] # lookup rotary embeddings
embeddings = embeddings.flatten(1)
return embeddings
def fast_pos_embed_interpolate(self, grid_thw):
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2]
idx_list = [[] for _ in range(4)]
weight_list = [[] for _ in range(4)]
for t, h, w in zip(grid_ts, grid_hs, grid_ws):
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h)
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w)
h_idxs_floor = h_idxs.int()
w_idxs_floor = w_idxs.int()
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
dh = h_idxs - h_idxs_floor
dw = w_idxs - w_idxs_floor
base_h = h_idxs_floor * self.num_grid_per_side
base_h_ceil = h_idxs_ceil * self.num_grid_per_side
indices = [
(base_h[None].T + w_idxs_floor[None]).flatten(),
(base_h[None].T + w_idxs_ceil[None]).flatten(),
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(),
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(),
]
weights = [
((1 - dh)[None].T * (1 - dw)[None]).flatten(),
((1 - dh)[None].T * dw[None]).flatten(),
(dh[None].T * (1 - dw)[None]).flatten(),
(dh[None].T * dw[None]).flatten(),
]
for i in range(4):
idx_list[i].extend(indices[i].tolist())
weight_list[i].extend(weights[i].tolist())
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device)
weight_tensor = torch.tensor(
weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device
)
pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3]
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)])
patch_pos_embeds_permute = []
merge_size = self.config.spatial_merge_size
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws):
pos_embed = pos_embed.repeat(t, 1)
pos_embed = (
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1)
.permute(0, 1, 3, 2, 4, 5)
.flatten(0, 4)
)
patch_pos_embeds_permute.append(pos_embed)
patch_pos_embeds = torch.cat(patch_pos_embeds_permute)
return patch_pos_embeds
def forward(
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
The final hidden states of the model.
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
The temporal, height and width of feature shape of each image in LLM.
Returns:
`torch.Tensor`: hidden_states.
"""
hidden_states = self.patch_embed(hidden_states)
pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
hidden_states = hidden_states + pos_embeds
rotary_pos_emb = self.rot_pos_emb(grid_thw)
seq_len, _ = hidden_states.size()
hidden_states = hidden_states.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
deepstack_feature_lists = []
for layer_num, blk in enumerate(self.blocks):
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings,
**kwargs,
)
if layer_num in self.deepstack_visual_indexes:
deepstack_feature = self.deepstack_merger_list[
self.deepstack_visual_indexes.index(layer_num)
](hidden_states)
deepstack_feature_lists.append(deepstack_feature)
# hidden_states = self.merger(hidden_states)
return hidden_states, deepstack_feature_lists
class SMBVisionPredictor(PreTrainedModel):
config: SMBVisionPredictorConfig
_no_split_modules = ["SMBVisionBlock"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
_supports_attention_backend = True
def __init__(self, config, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
head_dim = config.hidden_size // config.num_heads
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[SMBVisionBlock(config) for _ in range(config.depth)]
)
self.in_proj = nn.Linear(config.in_hidden_size, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, config.in_hidden_size)
self.mask_token = nn.Parameter(torch.zeros(config.hidden_size))
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
merge_size = 1
max_hw = int(grid_thw[:, 1:].max().item())
freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
device = freq_table.device
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)
offset = 0
for num_frames, height, width in grid_thw:
merged_h, merged_w = height // merge_size, width // merge_size
block_rows = torch.arange(merged_h, device=device) # block row indices
block_cols = torch.arange(merged_w, device=device) # block col indices
intra_row = torch.arange(
merge_size, device=device
) # intra-block row offsets
intra_col = torch.arange(
merge_size, device=device
) # intra-block col offsets
# Compute full-resolution positions
row_idx = (
block_rows[:, None, None, None] * merge_size
+ intra_row[None, None, :, None]
)
col_idx = (
block_cols[None, :, None, None] * merge_size
+ intra_col[None, None, None, :]
)
row_idx = row_idx.expand(
merged_h, merged_w, merge_size, merge_size
).reshape(-1)
col_idx = col_idx.expand(
merged_h, merged_w, merge_size, merge_size
).reshape(-1)
coords = torch.stack((row_idx, col_idx), dim=-1)
if num_frames > 1:
coords = coords.repeat(num_frames, 1)
num_tokens = coords.shape[0]
pos_ids[offset : offset + num_tokens] = coords
offset += num_tokens
embeddings = freq_table[pos_ids] # lookup rotary embeddings
embeddings = embeddings.flatten(1)
return embeddings
def forward(
self,
hidden_states: torch.Tensor,
grid_thw: torch.Tensor,
target_mask: torch.Tensor,
**kwargs,
) -> torch.Tensor:
# mask out the hidden states
hidden_states = self.in_proj(hidden_states)
hidden_states[target_mask] = self.mask_token
# apply position embeddings
rotary_pos_emb = self.rot_pos_emb(grid_thw)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for layer_num, blk in enumerate(self.blocks):
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings,
**kwargs,
)
# hidden_states = self.merger(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
@dataclass
class SMBVisionModelOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
mim_loss: Optional[torch.FloatTensor] = None
jepa_loss: Optional[torch.FloatTensor] = None
hidden_states: Optional[torch.FloatTensor] = None
enc_hidden_states: Optional[torch.FloatTensor] = None
predicted_hidden_states: Optional[torch.FloatTensor] = None
class SMBVisionPretrainedModel(PreTrainedModel):
config: SMBVisionModelConfig
base_model_prefix = ""
supports_gradient_checkpointing = True
_no_split_modules = ["SMBVisionBlock"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
_supports_attention_backend = True
def _init_weights(self, module):
"""Initialize the weights"""
init_std = self.config.vision_config.initializer_range
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
def trunc_normal_f32_(weight, std):
data_float_32 = weight.data.to(torch.float32)
data_init = nn.init.trunc_normal_(data_float_32, mean=0.0, std=std)
weight.data = data_init.to(weight.dtype)
if isinstance(module, SMBVisionEncoder):
trunc_normal_f32_(module.pos_embed.weight, std=init_std)
for i, layer in enumerate(module.blocks, 1):
std = init_std / (i**0.5)
trunc_normal_f32_(layer.attn.proj.weight, std=std)
trunc_normal_f32_(layer.mlp.fc2.weight, std=std)
std = init_std / (len(module.blocks) + 1) ** 0.5
trunc_normal_f32_(module.mlp.fc2.weight, std=std)
elif isinstance(module, SMBVisionPredictor):
trunc_normal_f32_(module.mask_token, std=init_std)
trunc_normal_f32_(module.in_proj.weight, std=init_std)
trunc_normal_f32_(module.out_proj.weight, std=init_std)
for i, layer in enumerate(module.blocks, 1):
std = init_std / (i**0.5)
trunc_normal_f32_(layer.attn.proj.weight, std=std)
trunc_normal_f32_(layer.mlp.fc2.weight, std=std)
std = init_std / (len(module.blocks) + 1) ** 0.5
trunc_normal_f32_(module.mlp.fc2.weight, std=std)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
trunc_normal_f32_(module.weight, std=init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class SMBVisionModel(SMBVisionPretrainedModel):
def __init__(self, config, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.encoder = SMBVisionEncoder._from_config(config.vision_config)
self.predictor = SMBVisionPredictor._from_config(config.predictor_config)
self.to_pixels = nn.Linear(
config.vision_config.hidden_size,
config.vision_config.patch_size**2
* config.vision_config.temporal_patch_size,
)
self.masking_ratio = config.masking_ratio
self.mask_token = nn.Parameter(
torch.zeros(
config.vision_config.in_channels
* config.vision_config.temporal_patch_size
* config.vision_config.patch_size**2
)
)
self.mim_loss = nn.L1Loss(reduction="mean")
self.jepa_loss = nn.MSELoss(reduction="mean")
# Initialize weights and apply final processing
self.post_init()
def forward_features(
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs
) -> torch.Tensor:
return self.encoder(hidden_states, grid_thw, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
grid_thw: torch.Tensor,
context_mask: Optional[torch.Tensor],
target_mask: Optional[torch.Tensor],
**kwargs,
) -> torch.Tensor:
# modeling masked image reconstruction
# prepare mask tokens
num_masked = int(self.masking_ratio * hidden_states.shape[0])
masked_indices = torch.randperm(hidden_states.shape[0])[:num_masked]
# replace masked indices with mask tokens
inputs_mim = hidden_states.clone()
inputs_mim[masked_indices] = self.mask_token.to(hidden_states.dtype)
masked_hidden_states, deepstack_feature_lists = self.encoder(
inputs_mim, grid_thw, **kwargs
)
masked_hidden_states = self.to_pixels(masked_hidden_states)
# compute mim loss
mim_loss = self.mim_loss(
masked_hidden_states[masked_indices], hidden_states[masked_indices]
)
# modeling next embedding prediction
if context_mask is not None and target_mask is not None:
context_mask = context_mask == 1
target_mask = target_mask == 1
# extend context and target masks
lengths = torch.prod(grid_thw, dim=1)
extended_context_mask = torch.repeat_interleave(context_mask, lengths)
extended_target_mask = torch.repeat_interleave(target_mask, lengths)
enc_hidden_states, deepstack_feature_lists = self.encoder(
hidden_states[extended_context_mask], grid_thw[context_mask], **kwargs
)
pred_hidden_states = self.predictor(
enc_hidden_states,
grid_thw[context_mask],
extended_target_mask,
**kwargs,
)
jepa_loss = self.jepa_loss(
pred_hidden_states[extended_target_mask],
enc_hidden_states[extended_target_mask],
)
loss = mim_loss + jepa_loss
return SMBVisionModelOutput(
loss=loss,
mim_loss=mim_loss,
jepa_loss=jepa_loss,
hidden_states=hidden_states,
enc_hidden_states=enc_hidden_states,
predicted_hidden_states=pred_hidden_states,
)
else:
return SMBVisionModelOutput(
loss=mim_loss,
mim_loss=mim_loss,
jepa_loss=None,
hidden_states=hidden_states,
predicted_hidden_states=None,
)
__all__ = ["SMBVisionEncoder", "SMBVisionPredictor", "SMBVisionModel"]