|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
from typing import Callable, Optional |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutput, ModelOutput |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs |
|
|
from .configuration_smb_vision import ( |
|
|
SMBVisionConfig, |
|
|
SMBVisionPredictorConfig, |
|
|
SMBVisionModelConfig, |
|
|
) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( |
|
|
query.dtype |
|
|
) |
|
|
attn_weights = nn.functional.dropout( |
|
|
attn_weights, p=dropout, training=module.training |
|
|
) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class SMBVisionMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) |
|
|
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_state): |
|
|
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) |
|
|
|
|
|
|
|
|
class SMBVisionPatchEmbed(nn.Module): |
|
|
def __init__(self, config) -> None: |
|
|
super().__init__() |
|
|
self.patch_size = config.patch_size |
|
|
self.temporal_patch_size = config.temporal_patch_size |
|
|
self.in_channels = config.in_channels |
|
|
self.embed_dim = config.hidden_size |
|
|
|
|
|
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] |
|
|
for in_channels in [1, 3, 4]: |
|
|
setattr( |
|
|
self, |
|
|
f"proj_c{in_channels}", |
|
|
nn.Conv3d( |
|
|
in_channels, |
|
|
self.embed_dim, |
|
|
kernel_size=kernel_size, |
|
|
stride=kernel_size, |
|
|
bias=True, |
|
|
), |
|
|
) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
target_dtype = self.proj_c1.weight.dtype |
|
|
if self.in_channels == 1: |
|
|
hidden_states = hidden_states.view( |
|
|
-1, 1, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj_c1(hidden_states.to(dtype=target_dtype)).view( |
|
|
-1, self.embed_dim |
|
|
) |
|
|
elif self.in_channels == 3: |
|
|
hidden_states = hidden_states.view( |
|
|
-1, 3, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj_c3(hidden_states.to(dtype=target_dtype)).view( |
|
|
-1, self.embed_dim |
|
|
) |
|
|
elif self.in_channels == 4: |
|
|
hidden_states = hidden_states.view( |
|
|
-1, 4, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj_c4(hidden_states.to(dtype=target_dtype)).view( |
|
|
-1, self.embed_dim |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Unsupported number of channels: {self.in_channels}") |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class SMBVisionRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
|
super().__init__() |
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
|
seq = torch.arange( |
|
|
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype |
|
|
) |
|
|
freqs = torch.outer(seq, self.inv_freq) |
|
|
return freqs |
|
|
|
|
|
|
|
|
class SMBVisionPatchMerger(nn.Module): |
|
|
def __init__(self, config, use_postshuffle_norm=False) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) |
|
|
self.use_postshuffle_norm = use_postshuffle_norm |
|
|
self.norm = nn.LayerNorm( |
|
|
self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6 |
|
|
) |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
self.act_fn = nn.GELU() |
|
|
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.norm( |
|
|
x.contiguous().view(-1, self.hidden_size) |
|
|
if self.use_postshuffle_norm |
|
|
else x |
|
|
).view(-1, self.hidden_size) |
|
|
x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision( |
|
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
orig_q_dtype = q.dtype |
|
|
orig_k_dtype = k.dtype |
|
|
q, k = q.float(), k.float() |
|
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
q_embed = q_embed.to(orig_q_dtype) |
|
|
k_embed = k_embed.to(orig_k_dtype) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class SMBVisionAttention(nn.Module): |
|
|
def __init__(self, config) -> None: |
|
|
super().__init__() |
|
|
self.dim = config.hidden_size |
|
|
self.num_heads = config.num_heads |
|
|
self.head_dim = self.dim // self.num_heads |
|
|
self.num_key_value_groups = 1 |
|
|
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) |
|
|
self.proj = nn.Linear(self.dim, self.dim) |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.config = config |
|
|
self.attention_dropout = 0.0 |
|
|
self.is_causal = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
seq_length = hidden_states.shape[0] |
|
|
query_states, key_states, value_states = ( |
|
|
self.qkv(hidden_states) |
|
|
.reshape(seq_length, 3, self.num_heads, -1) |
|
|
.permute(1, 0, 2, 3) |
|
|
.unbind(0) |
|
|
) |
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb_vision( |
|
|
query_states, key_states, cos, sin |
|
|
) |
|
|
|
|
|
query_states = query_states.transpose(0, 1).unsqueeze(0) |
|
|
key_states = key_states.transpose(0, 1).unsqueeze(0) |
|
|
value_states = value_states.transpose(0, 1).unsqueeze(0) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[ |
|
|
self.config._attn_implementation |
|
|
] |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() |
|
|
attn_output, _ = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
cu_seq_lens_q=cu_seqlens, |
|
|
cu_seq_lens_k=cu_seqlens, |
|
|
max_length_q=max_seqlen, |
|
|
max_length_k=max_seqlen, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
) |
|
|
else: |
|
|
|
|
|
lengths = cu_seqlens[1:] - cu_seqlens[:-1] |
|
|
splits = [ |
|
|
torch.split(tensor, lengths.tolist(), dim=2) |
|
|
for tensor in (query_states, key_states, value_states) |
|
|
] |
|
|
|
|
|
attn_outputs = [ |
|
|
attention_interface( |
|
|
self, |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
)[0] |
|
|
for q, k, v in zip(*splits) |
|
|
] |
|
|
attn_output = torch.cat(attn_outputs, dim=1) |
|
|
|
|
|
attn_output = attn_output.reshape(seq_length, -1).contiguous() |
|
|
attn_output = self.proj(attn_output) |
|
|
return attn_output |
|
|
|
|
|
|
|
|
class SMBVisionBlock(GradientCheckpointingLayer): |
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
|
super().__init__() |
|
|
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.attn = SMBVisionAttention(config=config) |
|
|
self.mlp = SMBVisionMLP(config=config) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
hidden_states = hidden_states + self.attn( |
|
|
self.norm1(hidden_states), |
|
|
cu_seqlens=cu_seqlens, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class SMBVisionEncoder(PreTrainedModel): |
|
|
config: SMBVisionConfig |
|
|
_no_split_modules = ["SMBVisionBlock"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = False |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
self.patch_size = config.patch_size |
|
|
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size |
|
|
|
|
|
self.patch_embed = SMBVisionPatchEmbed( |
|
|
config=config, |
|
|
) |
|
|
|
|
|
self.pos_embed = nn.Embedding( |
|
|
config.num_position_embeddings, config.hidden_size |
|
|
) |
|
|
self.num_grid_per_side = int(config.num_position_embeddings**0.5) |
|
|
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
|
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2) |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
|
[SMBVisionBlock(config) for _ in range(config.depth)] |
|
|
) |
|
|
self.merger = SMBVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=False, |
|
|
) |
|
|
|
|
|
self.deepstack_visual_indexes = config.deepstack_visual_indexes |
|
|
self.deepstack_merger_list = nn.ModuleList( |
|
|
[ |
|
|
SMBVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=True, |
|
|
) |
|
|
for _ in range(len(config.deepstack_visual_indexes)) |
|
|
] |
|
|
) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: |
|
|
merge_size = self.spatial_merge_size |
|
|
|
|
|
max_hw = int(grid_thw[:, 1:].max().item()) |
|
|
freq_table = self.rotary_pos_emb(max_hw) |
|
|
device = freq_table.device |
|
|
|
|
|
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) |
|
|
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) |
|
|
|
|
|
offset = 0 |
|
|
for num_frames, height, width in grid_thw: |
|
|
merged_h, merged_w = height // merge_size, width // merge_size |
|
|
|
|
|
block_rows = torch.arange(merged_h, device=device) |
|
|
block_cols = torch.arange(merged_w, device=device) |
|
|
intra_row = torch.arange( |
|
|
merge_size, device=device |
|
|
) |
|
|
intra_col = torch.arange( |
|
|
merge_size, device=device |
|
|
) |
|
|
|
|
|
|
|
|
row_idx = ( |
|
|
block_rows[:, None, None, None] * merge_size |
|
|
+ intra_row[None, None, :, None] |
|
|
) |
|
|
col_idx = ( |
|
|
block_cols[None, :, None, None] * merge_size |
|
|
+ intra_col[None, None, None, :] |
|
|
) |
|
|
|
|
|
row_idx = row_idx.expand( |
|
|
merged_h, merged_w, merge_size, merge_size |
|
|
).reshape(-1) |
|
|
col_idx = col_idx.expand( |
|
|
merged_h, merged_w, merge_size, merge_size |
|
|
).reshape(-1) |
|
|
|
|
|
coords = torch.stack((row_idx, col_idx), dim=-1) |
|
|
|
|
|
if num_frames > 1: |
|
|
coords = coords.repeat(num_frames, 1) |
|
|
|
|
|
num_tokens = coords.shape[0] |
|
|
pos_ids[offset : offset + num_tokens] = coords |
|
|
offset += num_tokens |
|
|
|
|
|
embeddings = freq_table[pos_ids] |
|
|
embeddings = embeddings.flatten(1) |
|
|
return embeddings |
|
|
|
|
|
def fast_pos_embed_interpolate(self, grid_thw): |
|
|
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] |
|
|
|
|
|
idx_list = [[] for _ in range(4)] |
|
|
weight_list = [[] for _ in range(4)] |
|
|
|
|
|
for t, h, w in zip(grid_ts, grid_hs, grid_ws): |
|
|
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) |
|
|
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) |
|
|
|
|
|
h_idxs_floor = h_idxs.int() |
|
|
w_idxs_floor = w_idxs.int() |
|
|
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
|
|
|
dh = h_idxs - h_idxs_floor |
|
|
dw = w_idxs - w_idxs_floor |
|
|
|
|
|
base_h = h_idxs_floor * self.num_grid_per_side |
|
|
base_h_ceil = h_idxs_ceil * self.num_grid_per_side |
|
|
|
|
|
indices = [ |
|
|
(base_h[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h[None].T + w_idxs_ceil[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), |
|
|
] |
|
|
|
|
|
weights = [ |
|
|
((1 - dh)[None].T * (1 - dw)[None]).flatten(), |
|
|
((1 - dh)[None].T * dw[None]).flatten(), |
|
|
(dh[None].T * (1 - dw)[None]).flatten(), |
|
|
(dh[None].T * dw[None]).flatten(), |
|
|
] |
|
|
|
|
|
for i in range(4): |
|
|
idx_list[i].extend(indices[i].tolist()) |
|
|
weight_list[i].extend(weights[i].tolist()) |
|
|
|
|
|
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device) |
|
|
weight_tensor = torch.tensor( |
|
|
weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device |
|
|
) |
|
|
pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None] |
|
|
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] |
|
|
|
|
|
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)]) |
|
|
|
|
|
patch_pos_embeds_permute = [] |
|
|
merge_size = self.config.spatial_merge_size |
|
|
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): |
|
|
pos_embed = pos_embed.repeat(t, 1) |
|
|
pos_embed = ( |
|
|
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1) |
|
|
.permute(0, 1, 3, 2, 4, 5) |
|
|
.flatten(0, 4) |
|
|
) |
|
|
patch_pos_embeds_permute.append(pos_embed) |
|
|
patch_pos_embeds = torch.cat(patch_pos_embeds_permute) |
|
|
return patch_pos_embeds |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): |
|
|
The final hidden states of the model. |
|
|
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: hidden_states. |
|
|
""" |
|
|
hidden_states = self.patch_embed(hidden_states) |
|
|
|
|
|
pos_embeds = self.fast_pos_embed_interpolate(grid_thw) |
|
|
hidden_states = hidden_states + pos_embeds |
|
|
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
|
|
|
seq_len, _ = hidden_states.size() |
|
|
hidden_states = hidden_states.reshape(seq_len, -1) |
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
|
|
cu_seqlens = torch.repeat_interleave( |
|
|
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0] |
|
|
).cumsum( |
|
|
dim=0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
|
|
deepstack_feature_lists = [] |
|
|
for layer_num, blk in enumerate(self.blocks): |
|
|
hidden_states = blk( |
|
|
hidden_states, |
|
|
cu_seqlens=cu_seqlens, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
if layer_num in self.deepstack_visual_indexes: |
|
|
deepstack_feature = self.deepstack_merger_list[ |
|
|
self.deepstack_visual_indexes.index(layer_num) |
|
|
](hidden_states) |
|
|
deepstack_feature_lists.append(deepstack_feature) |
|
|
|
|
|
|
|
|
|
|
|
return hidden_states, deepstack_feature_lists |
|
|
|
|
|
|
|
|
class SMBVisionPredictor(PreTrainedModel): |
|
|
config: SMBVisionPredictorConfig |
|
|
_no_split_modules = ["SMBVisionBlock"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = False |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
|
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2) |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
|
[SMBVisionBlock(config) for _ in range(config.depth)] |
|
|
) |
|
|
|
|
|
self.in_proj = nn.Linear(config.in_hidden_size, config.hidden_size) |
|
|
self.out_proj = nn.Linear(config.hidden_size, config.in_hidden_size) |
|
|
self.mask_token = nn.Parameter(torch.zeros(config.hidden_size)) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: |
|
|
merge_size = 1 |
|
|
|
|
|
max_hw = int(grid_thw[:, 1:].max().item()) |
|
|
freq_table = self.rotary_pos_emb(max_hw) |
|
|
device = freq_table.device |
|
|
|
|
|
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) |
|
|
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) |
|
|
|
|
|
offset = 0 |
|
|
for num_frames, height, width in grid_thw: |
|
|
merged_h, merged_w = height // merge_size, width // merge_size |
|
|
|
|
|
block_rows = torch.arange(merged_h, device=device) |
|
|
block_cols = torch.arange(merged_w, device=device) |
|
|
intra_row = torch.arange( |
|
|
merge_size, device=device |
|
|
) |
|
|
intra_col = torch.arange( |
|
|
merge_size, device=device |
|
|
) |
|
|
|
|
|
|
|
|
row_idx = ( |
|
|
block_rows[:, None, None, None] * merge_size |
|
|
+ intra_row[None, None, :, None] |
|
|
) |
|
|
col_idx = ( |
|
|
block_cols[None, :, None, None] * merge_size |
|
|
+ intra_col[None, None, None, :] |
|
|
) |
|
|
|
|
|
row_idx = row_idx.expand( |
|
|
merged_h, merged_w, merge_size, merge_size |
|
|
).reshape(-1) |
|
|
col_idx = col_idx.expand( |
|
|
merged_h, merged_w, merge_size, merge_size |
|
|
).reshape(-1) |
|
|
|
|
|
coords = torch.stack((row_idx, col_idx), dim=-1) |
|
|
|
|
|
if num_frames > 1: |
|
|
coords = coords.repeat(num_frames, 1) |
|
|
|
|
|
num_tokens = coords.shape[0] |
|
|
pos_ids[offset : offset + num_tokens] = coords |
|
|
offset += num_tokens |
|
|
|
|
|
embeddings = freq_table[pos_ids] |
|
|
embeddings = embeddings.flatten(1) |
|
|
return embeddings |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
grid_thw: torch.Tensor, |
|
|
target_mask: torch.Tensor, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
|
|
|
hidden_states = self.in_proj(hidden_states) |
|
|
hidden_states[target_mask] = self.mask_token |
|
|
|
|
|
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
|
|
cu_seqlens = torch.repeat_interleave( |
|
|
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0] |
|
|
).cumsum( |
|
|
dim=0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
|
|
for layer_num, blk in enumerate(self.blocks): |
|
|
hidden_states = blk( |
|
|
hidden_states, |
|
|
cu_seqlens=cu_seqlens, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = self.out_proj(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class SMBVisionModelOutput(ModelOutput): |
|
|
loss: Optional[torch.FloatTensor] = None |
|
|
mim_loss: Optional[torch.FloatTensor] = None |
|
|
jepa_loss: Optional[torch.FloatTensor] = None |
|
|
hidden_states: Optional[torch.FloatTensor] = None |
|
|
enc_hidden_states: Optional[torch.FloatTensor] = None |
|
|
predicted_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
|
class SMBVisionPretrainedModel(PreTrainedModel): |
|
|
config: SMBVisionModelConfig |
|
|
base_model_prefix = "" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["SMBVisionBlock"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = False |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
|
|
|
init_std = self.config.vision_config.initializer_range |
|
|
|
|
|
|
|
|
|
|
|
def trunc_normal_f32_(weight, std): |
|
|
data_float_32 = weight.data.to(torch.float32) |
|
|
data_init = nn.init.trunc_normal_(data_float_32, mean=0.0, std=std) |
|
|
weight.data = data_init.to(weight.dtype) |
|
|
|
|
|
if isinstance(module, SMBVisionEncoder): |
|
|
trunc_normal_f32_(module.pos_embed.weight, std=init_std) |
|
|
for i, layer in enumerate(module.blocks, 1): |
|
|
std = init_std / (i**0.5) |
|
|
trunc_normal_f32_(layer.attn.proj.weight, std=std) |
|
|
trunc_normal_f32_(layer.mlp.fc2.weight, std=std) |
|
|
std = init_std / (len(module.blocks) + 1) ** 0.5 |
|
|
trunc_normal_f32_(module.mlp.fc2.weight, std=std) |
|
|
elif isinstance(module, SMBVisionPredictor): |
|
|
trunc_normal_f32_(module.mask_token, std=init_std) |
|
|
trunc_normal_f32_(module.in_proj.weight, std=init_std) |
|
|
trunc_normal_f32_(module.out_proj.weight, std=init_std) |
|
|
for i, layer in enumerate(module.blocks, 1): |
|
|
std = init_std / (i**0.5) |
|
|
trunc_normal_f32_(layer.attn.proj.weight, std=std) |
|
|
trunc_normal_f32_(layer.mlp.fc2.weight, std=std) |
|
|
std = init_std / (len(module.blocks) + 1) ** 0.5 |
|
|
trunc_normal_f32_(module.mlp.fc2.weight, std=std) |
|
|
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): |
|
|
trunc_normal_f32_(module.weight, std=init_std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.LayerNorm): |
|
|
module.bias.data.zero_() |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class SMBVisionModel(SMBVisionPretrainedModel): |
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
|
|
self.encoder = SMBVisionEncoder._from_config(config.vision_config) |
|
|
self.predictor = SMBVisionPredictor._from_config(config.predictor_config) |
|
|
self.to_pixels = nn.Linear( |
|
|
config.vision_config.hidden_size, |
|
|
config.vision_config.patch_size**2 |
|
|
* config.vision_config.temporal_patch_size, |
|
|
) |
|
|
self.masking_ratio = config.masking_ratio |
|
|
self.mask_token = nn.Parameter( |
|
|
torch.zeros( |
|
|
config.vision_config.in_channels |
|
|
* config.vision_config.temporal_patch_size |
|
|
* config.vision_config.patch_size**2 |
|
|
) |
|
|
) |
|
|
|
|
|
self.mim_loss = nn.L1Loss(reduction="mean") |
|
|
self.jepa_loss = nn.MSELoss(reduction="mean") |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward_features( |
|
|
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs |
|
|
) -> torch.Tensor: |
|
|
return self.encoder(hidden_states, grid_thw, **kwargs) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
grid_thw: torch.Tensor, |
|
|
context_mask: Optional[torch.Tensor], |
|
|
target_mask: Optional[torch.Tensor], |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
|
num_masked = int(self.masking_ratio * hidden_states.shape[0]) |
|
|
masked_indices = torch.randperm(hidden_states.shape[0])[:num_masked] |
|
|
|
|
|
inputs_mim = hidden_states.clone() |
|
|
inputs_mim[masked_indices] = self.mask_token.to(hidden_states.dtype) |
|
|
masked_hidden_states, deepstack_feature_lists = self.encoder( |
|
|
inputs_mim, grid_thw, **kwargs |
|
|
) |
|
|
masked_hidden_states = self.to_pixels(masked_hidden_states) |
|
|
|
|
|
mim_loss = self.mim_loss( |
|
|
masked_hidden_states[masked_indices], hidden_states[masked_indices] |
|
|
) |
|
|
|
|
|
|
|
|
if context_mask is not None and target_mask is not None: |
|
|
context_mask = context_mask == 1 |
|
|
target_mask = target_mask == 1 |
|
|
|
|
|
lengths = torch.prod(grid_thw, dim=1) |
|
|
extended_context_mask = torch.repeat_interleave(context_mask, lengths) |
|
|
extended_target_mask = torch.repeat_interleave(target_mask, lengths) |
|
|
|
|
|
enc_hidden_states, deepstack_feature_lists = self.encoder( |
|
|
hidden_states[extended_context_mask], grid_thw[context_mask], **kwargs |
|
|
) |
|
|
pred_hidden_states = self.predictor( |
|
|
enc_hidden_states, |
|
|
grid_thw[context_mask], |
|
|
extended_target_mask, |
|
|
**kwargs, |
|
|
) |
|
|
jepa_loss = self.jepa_loss( |
|
|
pred_hidden_states[extended_target_mask], |
|
|
enc_hidden_states[extended_target_mask], |
|
|
) |
|
|
|
|
|
loss = mim_loss + jepa_loss |
|
|
return SMBVisionModelOutput( |
|
|
loss=loss, |
|
|
mim_loss=mim_loss, |
|
|
jepa_loss=jepa_loss, |
|
|
hidden_states=hidden_states, |
|
|
enc_hidden_states=enc_hidden_states, |
|
|
predicted_hidden_states=pred_hidden_states, |
|
|
) |
|
|
else: |
|
|
return SMBVisionModelOutput( |
|
|
loss=mim_loss, |
|
|
mim_loss=mim_loss, |
|
|
jepa_loss=None, |
|
|
hidden_states=hidden_states, |
|
|
predicted_hidden_states=None, |
|
|
) |
|
|
|
|
|
|
|
|
__all__ = ["SMBVisionEncoder", "SMBVisionPredictor", "SMBVisionModel"] |
|
|
|